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1. Introduction

Studies of nuclear states with unusual properties — nontrivial values of flavor quantum num-
bers (strangeness, charm or beauty), or large isospin (so called neutron rich nuclides) are important
not only for the nuclear physics itself, but for astrophysics and cosmology. Studies of neutron rich
hypernuclei recently got new impact due to discovery of the hypernucleus6ΛH (heavy hyperhydro-
gen) by FINUDA Collaboration (2012) which followed its search during several years [1].

Theoretical discussion began with the work by R.H. Dalitz and R. Levi-Setti [3], see [4, 5, 6]
in parallel with experimental searches [7, 8, 9]. Dalitz andLevi-Setti noted: Lambda particle may
act as additional glue for the nuclear matter, increasing the binding energy in comparison with
nuclei having zero strangeness. This observation is confirmed within the chiral soliton approach
(CSA). Moreover, this effect becomes stronger for the neutron rich nuclei, with increasing excess
of neutrons inside the nucleus.

The advantage of the CSA [10], [11] is its universality, i.e.the possibility to consider different
nuclei on equal footing, and considerable predictive power. The drawback of the CSA is its rela-
tively low accuracy in describing the properties of each particular nucleus. In this respect the CSA
cannot compete with traditional approaches and models likeshell model, Hartree-Fock method,
etc. [3], [4, 5, 6].

The quantization of the model performed first in theSU(2) configuration space for the baryon
number one states [12], somewhat later for configurations with axial symmetry [13] and for mul-
tiskyrmions [14], allowed, in particular, to describe the properties of nucleons and∆-isobar and,
more recently, some properties of light nuclei [15, 16], including so called "symmetry energy"
[15]. Recently the neutron rich isotope18B has been found to be unstable relative to the decay
18B→17 B+n [17], in agreement with [15].

TheSU(3) quantization of the model has been performed first within therigid rotator approach
[18], and also in the bound state model [19]. The binding energies of the ground states of light
hypernuclei have been described in [20] within a version of the bound state chiral soliton model
[19], in qualitative agreement with data [21].

The collective motion contributions, only, have been takeninto account (single particles exci-
tations should be added), and special subtraction scheme has been used to remove uncertainties in
absolute values of masses intrinsic to the CSA [22, 23]. Thisinvestigation has been extended to
the higher in energy (excited) states, with baryon numberB= 2 and 3, some of them may be inter-
preted as antikaon-nuclei bound states [24]. Some of these states are bound stronger than predicted
originally by Akaishi and Yamazaki [25, 26]. These states could overlap and appear in experiment
as a broad enhancement, in qualitative agreement with data obtained by FINUDA [27] and more
recently by DISTO [28].

2. Features of the Chiral Soliton Approach (CSA)

Principles and ingredients of the CSA incorporated in thetruncatedeffective chiral lagrangian
[10]:

Le f f =−F2
π

16
Trlµ lµ +

1
32e2 Tr[lµ lν ]

2+
F2

π m2
π

8
Tr

(

U +U†−2
)

, (1)
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the chiral derivativelµ = ∂µUU†, U ∈ SU(2) or U ∈ SU(3)- unitary matrix depending on chi-
ral fields,mπ is the pion mass,Fπ - the pion decay constant known experimentally,e - the only
parameter of the model in its minimal variant proposed first by Skyrme.

The chiral and flavor symmetry breaking term in the lagrangian density depends on kaon mass
and decay constantmK andFK (FK/Fπ ≃ 1.23 from experimental data):

LFSB=
F2

Km2
K −F2

π m2
π

24
Tr

(

U +U†−2
)(

1−
√

3λ8
)

− F2
K −F2

π
48

Tr
(

Ulµ lµ + lµ lµU†)(1−
√

3λ8
)

.

(2)
λ8 is theSU(3) Gell-Mann matrix. This term defines the mass splittings between strange and

nonstrange baryons (multibaryons), modifies some properties of skyrmions and is crucial. The
whole lagrangian given by(1),(2) is proportional to the number of colors of underkying QCD,
Le f f ∼ Nc. The mass term in(1) ∼ F2

π m2
π , changes asymptotics of the profilef and the structure of

multiskyrmions at largeB, in comparison with the massless case. For theSU(2) case

U = cos f+ i (~n~τ)sin f, (3)

the unit vector~ndepends on 2 functions,α , β , τk are the Pauli matrices. Three profiles{ f , α , β}(x,y,z)
parametrize the 4-component unit vector on the 3-sphereS3. The topological soliton (the skyrmion)
is configuration of chiral fields, possessing topological charge identified with the baryon numberB
(for the nucleus it is the atomic numberA: B= A).

3. Properties of multiskyrmions

Minimization of the mass functionalMcl provides 3 profiles{ f ,α ,β}(x,y,z) and allows to
calculate moments of inertiaΘI , ΘF , the Σ-term (we call itΓ) and some other characteristics of
chiral solitons shown in tables 1 and 2.

B ΘI ΘJ Θ0
F ΘS Γ Γ̃ µS ωS

1 5.55 5.55 2.05 2.636 4.80 14.9 3.155 307

6 25.4 178 13.1 16.64 29.0 38.0 3.125 287

7 28.9 221 14.7 18.64 32.3 44.0 3.009 283

8 33.4 298 17.4 22.15 38.9 47.0 3.125 288

9 37.8 376 20.6 26.25 46.3 47.5 3.269 292

10 41.4 455 23.0 29.35 52.0 50.0 3.289 293

11 45.2 547 25.6 32.74 58.5 52.4 3.340 295

13 52.1 737 30.5 39.07 70.2 56.8 3.372 296

14 56.1 865 33.7 43.15 78.2 58.9 3.460 299

16 63.2 1110 38.9 50.07 91.5 62.8 3.517 302

Table 1. Characteristics of classical skyrmion configurations which enter the nuclei — hypernuclei
binding energies differences: moments of inertiaΘ, Σ-termΓ andΓ̃ - in unitsGeV−1, ωS - in MeV,
µS is dimensionless Parameters of the modelFπ = 186MeV;e= 4.12. The numbers are taken from
[29, 30].
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B ΘI Θ0
F ΘS Γ Γ̃ µS ωS

1 12.8 4.66 5.893 10.1 19.6 6.407 344

6 62.6 30.7 38.60 64.7 50.6 6.728 334

7 69.6 34.9 43.75 72.5 54.4 6.500 330

8 79.9 41.3 51.97 87.4 58.2 6.785 334

9 88.9 47.1 59.43 101 61.7 6.927 337

10 97.4 52.6 66.40 113 64.9 6.957 336

11 106 58.5 73.88 126 67.9 7.038 337

12 114 63.8 80.65 138 70.8 7.049 337

13 122 69.5 87.94 151 73.6 7.102 338

14 132 76.3 96.81 168 76.3 7.289 341

15 140 82.3 104.5 182 78.8 7.353 342

16 148 88.1 112.0 196 81.2 7.402 343

Table 2. Same as in Table 1 for rescaled (nuclear) variant of the modelwith constante= 3.0
[15, 31].

These characteristics of classical configurations containimplicitly information about interac-
tion between baryons.ΘS given in Tables 1 and 2 is certain combination ofΘ0

F and sigma term
Γ:

ΘS= Θ0
F +

1
4

(

F2
K

F2
π
−1

)

Γ. (4)

The strangeness excitation energiesωS given in Tables 1, 2 are somewhat overestimated, especially
for nuclear variant of the model — this is an artefact of the CSA. However, this overestimation
is cancelled in the nuclear binding energies differences considered below. The rational map ap-
proximation [32] simplifies considerably calculations of various characteristics of multiskyrmions
presented in Tables 1, 2.

4. Mass formula for multibaryons in the SU(3) bound state model

The observed spectrum of strange multibaryon states (hypernuclei) is obtained by means of
theSU(3) quantization procedure and depends on the quantum numbers of multibaryons and char-
acteristics of skyrmions presented in Tables 1, 2. Within the bound state model the antikaon field
is bound by theSU(2) skyrmion. The mass formula takes place

M(A,S, I ,J) = Mcl +ωS+ωS̄+ |S|ωS+∆MHFS (5)

where strangeness and antistrangeness excitation energies

ωS= Nc(µS−1)/8ΘS, ωS̄= Nc(µS+1)/8ΘS, (6)

ΘS= Θ0
F +

1
4

(

F2
K

F2
π
−1

)

Γ, µS=
√

1+ m̄2
K/M2

0,

M2
0 = N2

c/(16ΓΘS)∼ N0
c , m̄2

K = m2
KF2

K/F2
π . (7)
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The hyperfine splitting correction to the energy of the baryon state, depending on hyperfine
splitting constantscS, c̄S, observed isospinI , "strange isospin"IS, the isospin of skyrmion without
added antikaons~Ir and the angular momentumJ, equals in the case when interference between
usual space and isospace rotations is negligible or not important (Westerberg, Klebanov, 1996):

∆MHFS=
cSIr(Ir +1)− (cS−1)I(I +1)+ (c̄S−cS)IS(IS+1)

2ΘI
+

J(J+1)
2ΘJ

. (8)

The hyperfine splitting constants are equal

cS= 1− ΘI

2ΘSµS
(µS−1), c̄S= 1− ΘI

ΘSµ2
S

(µS−1), (9)

Strange isospin equalsIS = 1/2 for S= ∓1. We recall that body-fixed isospin~Ib f =~Ir +~IS, [?,
30]. ~Ir is quite analogous to the so called "right" isospin within the rotator quantization scheme.
WhenIS= 0, i.e. for nonstrange states,I = Ir and this formula goes over intoSU(2) formula for
multiskyrmions. Correction∆MHFS∼ 1/Nc is small at largeNc, and also for heavy flavors.

5. Total binding energies of neutron rich hypernuclei

The mass splitting withinSU(3) multiplets of multibaryons contains the smallest uncertainty:
the unknown for theB> 1 solitons Casimir energy [22, 23] cancels in the mass splittings. For the
difference of energies of states with strangenessSand withS= 0 which belong to multiplets with
equal values of(p,q)-numbers (p= 2Ir ), we obtain, using the above expressions for the constants
cS andc̄S (first subtraction):

∆E(p,q; I ,S; Ir ,0) = |S|ωS+
µS−1
4µSΘS

[I(I +1)− Ir(Ir +1)]+
(µS−1)(µS−2)

4µ2
SΘS

IS(IS+1). (10)

The term∼ (Ir + 1/4) in Eq. (11) is responsible for the additional binding of neutron rich
hypernuclei in comparison with theS= 0 neutron rich nuclei.

A− ΛA εexp
2 Λεexp

3/2 ε th
3/2 ε th,∗

3/2
6H − 6

ΛH 5.8 10.8 14.8 17
8He− 8

ΛHe 31.4 36.0 34.8 40
10Li − 10

Λ Li 45.3 40.6 50
12Be− 12

Λ Be 68.6 59.3 71
14B− 14

Λ B 85.4 70.4 84
16C− 16

Λ C 111 92.3 107

Table 3. The total binding energies (in MeV) of nonstrange isotopes with I = 2, N−Z = 4 (in
MeV) [33] and hypernuclei with isospinI = 3/2 for the original variant,e= 4.12, and for the vari-
ant with rescaled constant,e= 3 (numbers with the∗). Experimental values of binding energy are
available only for8ΛHe [7] and6

ΛH FINUDA [1].
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For the difference of binding energies of the hypernucleus with strangenessS= −1, isospin
I = Ir − 1/2 and the nonstrange nucleus with isospinI = Ir (the neutron excessN−Z = 2Ir ) we
obtain (second subtraction):

∆ε = ωS,1−ωS,B−
3
8

µS,1−1

µ2
S,1ΘS,1

+

(

Ir +
1
4

)

µS,B−1
4µS,BΘS,B

− 3
16

(µS,B−1)(µS,B−2)

µ2
S,BΘS,B

. (11)

The value of binding energy of hyperhydrogen shown here,ε(6
ΛH) = 10.8MeV is the sum of

the binding energy of6ΛH relative to5H +Λ, measured by FINUDA [1],ε(6
ΛH) = (4.0±1.1)MeV

and the binding energy of5H , ε(5H)≃ 6.78MeV [34].
The value of the binding energy of8

ΛHe shown in Table 3 is the sum of theΛ separation
energy 7.16±0.70MeV measured in [7], and the total binding energy of the7Henucleus,ε(7He)≃
28.82MeV [33].

A− ΛA εexp
5/2 ε th

2 ε th,∗
2

7H − 7
ΛH 8 23 24

9He− 9
ΛHe 30.3 30 37

11Li − 11
Λ Li 45.64 41 51

13Be− 13
Λ Be 68.1 59 71

15B− 15
Λ B 88.2 72 86

17C− 17
Λ C 111.5 94 108

Table 4. The case of the odd atomic numbersA, nonstrange isotopes withI = 5/2, N−Z = 5
(total binding energies are taken from [33]), and hypernuclei with I = 2. Experimental data on
hypernuclei binding energies are not available, still.

The value 8Mev for the binding energy of7H is preliminary result published in [35]. The
correction to the binding energies depending on the spin of the nucleusJ is not included. This
correction is small in any case because the moment of inertiaΘJ is large, generallyΘJ ∼ B2 and
ΘJ > BΘI .

The decrease of values of∆ε th
5/2,2 with increasing atomic number may be connected with lim-

ited applicability of the rational map approximation for describing multiskyrmions at larger baryon
(atomic) numbers.

6. Conclusions and prospects

The difference of total binding energies of neutron rich hypernucleus with atomic number
A, strangenessS= −1, chargeZ (i.e. containingZ protons), isospinI = (N−Z− 1)/2, and the
zero strangeness nucleus with same atomic numberA, Z protons andN=A−Z neutrons, which has
isospinI = (N−Z)/2 is calculated. Within the CSA this quantity contains the smallest uncertainty.

Calculations are performed for two values of the Skyrme constant,e= 4.12, ande= 3.0 (the
rescaled, or nuclear variant) which allowed to describe themass splittings of nuclear isotopes with
atomic numbers up to∼ 30 [15]. Both variants of the model provide close results for6

ΛH and7
ΛH,

but for greater atomic numbers the difference becomes considerable.
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Results of the rescaled nuclear variant are more reliable for greater atomic numbers,A≥∼ 10.
Further study of the dependence of our results on the only parameter of the model, the Skyrme
constante, is desirable.

Extention of these calculation to hypernuclei with arbitrary excess of neutrons in nuclei is
possible without difficulties, as well as to charm and beautyflavours.
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