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Making use of gauge/gravity duality, we study two strongly coupled field theories that are the
holographic duals of SU(2) Einstein-Yang-Mills gravitational theories on asymptotically Anti-de
Sitter backgrounds. One gravity setup is dual to a finite temperature field theory, while the other
has a hard wall cutoff and is dual to a confining gauge theory. Both of these models undergo
a superconducting phase transition at large enough values of the magnetic field. This yields a
condensate in the field theory that has a ground state resembling Abrikosov vortices of a type
II superconductor to linear order in perturbation theory. These models are related to p-wave
superconductors where the condensate is induced by a finite isospin density. The results presented
here may be of relevance to both condensed matter physics and heavy ion collisions. They may
also provide support for recent proposals that the QCD vacuum may be unstable to the formation
of a ρ meson condensate when a strong magnetic field is present.
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1. Introduction

Gauge/gravity duality has been a remarkably successful tool for investigating the phase dia-
gram of large N gauge theories. In the work [1], these investigations showed that an SU(2) mag-
netic field can play the role of an order parameter. This order parameter triggers a superconducting
phase transition in a strongly coupled field theory holographically dual to an SU(2) Einstein-Yang-
Mills model on an AdS5-Schwarzschild background. Then, in [2], the ground state of the new
phase was found. The ground state is, to linear order in an expansion of the condensate, equiva-
lent to the triangular lattice of Abrikosov vortices from type II superconductors. At the conference
“Xth Quark Confinement and the Hadron Spectrum” we were given the opportunity to present the
findings of [2], which we review in these proceedings.

The model we present is a cousin of holographic p-wave superconductors where the conden-
sation is induced by a finite isospin density. These are holographically realised by a non-trivial
temporal component of the SU(2) gauge field (see [3] and [4, 5] as well as the recent [6]). Our
model is thus a simple extension: we switch on a nonzero spatial component of this gauge field in-
stead of the temporal component. Whereas in [4, 5], a Meissner effect is shown to occur by which
a magnetic field reduces the transition temperature, here it is the magnetic field which induces
condensation at zero density.

The setup in these proceedings is interesting in the broader context of holographic lattices. In
[7], the authors studied the holographic construction of an Einstein-Maxwell-scalar theory at fi-
nite temperature and density. They broke the translational invariance explicitly by imposing scalar
field boundary conditions in the form of a lattice modulated in one of the Minkowski spatial di-
rections. Other works have focused on lattices resulting from spontaneous breaking of transla-
tional symmetry. The translational symmetry can be broken by a Chern-Simons term, as shown
in [8, 9, 10, 11, 12, 13], by a magnetic field, as shown in [14, 15], or by magnetic monopoles, as
shown in [16, 17]

Our holographic construction can also be seen as a model for a phenomenon first described
by Chernodub et al. in [18, 19]. There it was proposed that the QCD×QED vacuum may be
susceptible to a superconducting phase transition when a magnetic field of the order of the QCD
scale is present. This proposal came about through the study of a model proposed by Djukanovic,
Schindler, Gegelia and Scherer in [20], which is an effective description of ρ mesons interacting
with an electromagnetic field. For a large enough external magnetic field, it was shown that there is
an instability of the vacuum leading to a condensation of charged and neutral ρ mesons. This breaks
the U(1) gauge symmetry and leads to a superconductor with the quark-antiquark pairs in the
mesons acting as Cooper pairs. Moreover a solution was found in which the ρ meson condensate
forms an Abrikosov lattice made up of superconducting vortices [21]. There is evidence that such
strong magnetic fields may be present at RHIC and the ATLAS experiment at CERN ([22, 23]), so
it is interesting to ask if traces of this ρ meson condensate could be detected.

2. Holographic setup

We study a very simple model of a strongly coupled quantum field theory in (3+1)-dimensions
with a global SU(2) symmetry. Its gravitational dual is an Einstein-Yang-Mills theory on an asymp-
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totically AdS5 geometry with an SU(2) gauge field. The action is

S =
∫

d5x
√
−g

{
1

16πGN

(
R+

12
L2

)
− 1

4ĝ2 tr
(
FµνFµν

)}
, (2.1)

where ĝ is the Yang-Mills coupling, GN is the 5D gravitational constant and L is the AdS5 radius.
R and F are the Ricci scalar and Yang-Mills field strength respectively.

We consider the probe approximation, where the Yang-Mills term is small compared to the
Einstein-Hilbert term, so that the gauge fields do not backreact on the geometry. We thus choose a
fixed 5-dimensional background metric, given by

ds2 =
L2

u2

(
− f (u)dt2 +dx2 +dy2 +dz2 +

du2

f (u)

)
, (2.2)

where the asymptotically AdS region is at u→ 0. We study two different models. The first is a finite
temperature model where the background is AdS Schwarzschild, first proposed in [24]. In this case,
f (u) = 1− u4

u4
H

, where uH is the location of the planar black hole horizon. The Hawking temperature
of the black hole is T = 1/πuH . The second model is the hard wall cutoff model, proposed in [25,
26], where f (u) = 1 and the geometry terminates at a radial distance uC. This model corresponds to
a zero temperature theory (uH = ∞), but it still has a scale uC which corresponds to a confinement
scale in the gauge theory. Without loss of generality we choose units where uH = 1 in the finite
temperature theory and uC = 1 in the confining theory. Making this choice ensures that all physical
quantities are dimensionless.

The SU(2) gauge field has components Aa
µ , where a = 1 . . .3 and µ = t,x,y,z,u. We work in

the gauge Aa
u = 0. Some of these components should be dual to the magnetic field and others to

the condensate in the field theory. When the magnetic field is small and the system is in the normal
phase, we want a field strength tensor with F3

xy = B and all other components zero. As shown
in [1], when B is larger than a critical value Bc the system enters a new phase in which some of the
vanishing components of Fa

µν become nonzero. These new nonzero components correspond to the
field theory condensate. We look for the new ground state at some value of B infinitesimally above
Bc. In this case the correction to the normal phase solution will be small and a perturbative analysis
can be made in a parameter ε ∼ B−Bc

Bc
. We thus write an ansatz for the expansion in the form

Ex,y = εEx,y + ε
3ex,y +O(ε5) ,

A3
y = xBc + ε

2a3
y +O(ε4) , (2.3)

A3
x = ε

2a3
x +O(ε4) .

and solve the equations order by order in ε . Here E and A denote the non-perturbative fields, with
Eµ = A1

µ + iA2
µ . Ex,y and ex,y are first and third order contributions to the condensate components,

respectively, while a3
x,y are second order corrections to A3

x,y. Note that we neglect even powers of
the condensate components and odd powers of the magnetic field components. It turns out that we
can turn off the t and z dependence of each component of the gauge field and still have consistent
equations. Turning off the t dependence guarantees a static solution. Turning off the z dependence,
where the z direction is parallel to the magnetic field, yields a lattice in the x,y-plane. The structure
of the equations of motion ensure that we can do all of the above consistently. See [2] for further
details.
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The SU(2) gauge freedom in the choice of A needs to be handled carefully, as discussed in [1].
The idea is to have a model of a superconductor1, which means there should be a U(1) symmetry
that is broken spontaneously. The authors of [1] take the infinitesimal fluctuations Ex,y and form
linear combinations that transform covariantly in the fundamental of a U(1) subgroup of SU(2),
and then fix the remaining gauge symmetry. All the calculations can be done without these U(1)
covariant fields, however, so we will not use them in these proceedings.

3. Lattice solutions

In solving the PDE’s, we follow the strategy of [27, 28]. To linear order, the solution to the
equations of motion is given by

Ey =−iEx , (3.1)

Ex =
∞

∑
n=−∞

Cne−inky− 1
2 Bc(x− nk

Bc )
2

U(u) . (3.2)

The solution for Ex is a general linear combination of all possible lowest energy states — higher
energy solutions have been neglected. The function U(u) is determined numerically, as shown
in [1], and solving it determines the value for Bc. This is shown in [2] to be Bc ≈ 5.1 for the AdS
Schwarzschild model ( f (u) = 1−u4) and Bc ≈ 5.8 for the hard wall model ( f (u) = 1).

The constants Cn and k are not fixed to linear order. Their values are determined by minimizing
the ground state energy of the system, which needs to be calculated at fourth order. In order to
make this problem manageable, we first need to restrict the values that the Cn can take. We do
this by making use of some symmetries. We can argue that, since nothing in the setup is explicitly
breaking translational invariance in the x,y-directions, the solution should be a highly symmetric
lattice. This implies that the coefficients Cn must have the same magnitude |Cn| and moreover be
periodic in some integer P, that is, Cn =Cn+P.

In [27], Abrikosov first studied the simplest solution, a square lattice, which had P = 1. Later
Kleiner et al. in [29] generalised the analysis by looking at P = 2, with C1 = ±iC0 = ±iC. This
choice of coefficients specifies a general rhombic lattice, with the shape of the rhombus controlled
by varying k. Figure 1 shows how this works. The lengths of the lattice cell are given by Lx = 2k/Bc

and Ly = 2π/k. A triangular lattice is then obtained by choosing k = 3
1
4
√

πBc, and a square lattice
by choosing k =

√
πBc. We follow the approach of Kleiner et al, which is to compute the energy

density of the lattice for a range of values of the ratio R= Lx/Ly = k2/πBc. The energy is computed
numerically from the analytic expressions we obtain at each order.

The energy is calculated using the holographic dictionary. For the AdS Schwarzschild model,
we have a finite temperature so we can calculate the free energy using F =−T lnZ =−Scl , where
Scl is the classical action on the gravity side. In the hard wall case, we are simply calculating the
energy of the field configuration, which is defined in terms of the classical action in the same way.
The total energy diverges, so we calculate its average Ω over a lattice cell. Also, since we are only
interested in whether the energy of a particular superconducting solution is lower than that of the

1Note that this is actually a superfluid because the gauge symmetry is mapped to a global symmetry on the boundary.
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Figure 1: A lattice cell, illustrating the meanings of Lx and Ly for a fixed area cell.

normal phase solution, we can simply calculate the difference ∆Ω = Ωs−Ωn and thus do not need
to implement holographic renormalisation.

Solving the equations of motion to higher orders is technically challenging but not insightful,
so it will not be done here. Many of the details are however found in [2].

4. Results

As explained above, the strategy is to fix values of k, P, Cn = Cn+P and B (close to Bc) then
calculate the change in energy density ∆Ω. We only consider P = 2 with C1 = iC0 = iC. Leaving
C general, we then substitute these values into the energy density. It takes the form ∆Ω = a1εC+

a2ε2C2+ . . . . At this point we see that we can redefine C by absorbing a factor of ε , which we call
Cε . Cε is the then only parameter left unfixed. Here the ai are values that are calculated numerically
from substituting the solutions to the equations of motion into the expression for the energy. ∆Ω

forms a Mexican hat potential, which is easy to minimise numerically. The plot in figure 2 shows
the energy-minimising value of Cε as a function of magnetic field near the phase transition at Bc.
We see that Cε ∼ (B−Bc)

1
2 , so the condensate2 has a critical exponent of 1/2.

The curves in figure 3 show ∆Ω for the square and triangular lattices. They are the result
of calculations in the AdS Schwarzschild model, but we get the same results up to a rescaling of
the axes for the hard wall model. Each curve shows that the free energy density is proportional
to (B−Bc)

2. This shows that the phase transition is second order, as expected if one looks at
the analogous case in Ginzburg-Landau theory. There one can show ([30]) that the free energy is
proportional to (T −Tc)

2, where Tc is the phase transition critical temperature.
The energy difference as a function of R is plotted in figure 4. By looking at the lattice in

figure 1, it is possible to see that the triangular lattice occurs for R = Lx/Ly =
√

3 and R = 1/
√

3.
In general, R and 1/R give the same lattice but with the x and y directions flipped. This is why
figure 4 displays the symmetry ∆Ω(R) = ∆Ω(1/R). The triangular lattice corresponds to a global
minimum of the energy as a function of R, as seen from the figure. There is a local maximum
for the square lattice, which is when R = 1. As R→ ∞ (or R→ 0), the free energy increases.

2Note that only the combination εC is physically relevant, not C or ε independently.
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Figure 2: Cε ∼ the overall condensate size for the AdS Schwarzschild solution in units of the temperature,
as a function of the external magnetic field B. For B < Bc, the condensate is zero, and for B slightly above
Bc, we see a (B−Bc)

1
2 scaling behaviour. The plot for the hard wall model is the same, up to a scaling of

the B and Cε axes.

5.1 5.2 5.3 5.4 5.5 5.6
Bc
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-0.010

-0.005
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Figure 3: The change in energy density (compared to the normal phase) for the triangular and square lattices
as the external applied magnetic field is varied. The phase transition happens at Bc ≈ 5.1, which is where
the coordinate axes are centred. ∆Ωsquare−∆Ωtriangle is so small that the two plots are almost on top of each
other. This is for the AdS Schwarzschild model, but the plots for the hard wall model are identical except
for the scale on the axes. In the hard wall model, Bc ≈ 5.8.

Intuitively one can understand this by making use of the properties of Abrikosov vortices that we
understand from type II superconductors. These vortices repel. Since R→∞ and R→ 0 correspond
to elongating the rhombic lattice cell (while keeping the area constant) neighbouring vortices are
squeezed together, and since they repel, this is energetically unfavourable.

In figure 5 we present the contour plot of the modulus squared of the x,y-dependent factor
of the linear order solution to Ex. It represents the minimum energy state corresponding to the
triangular lattice. Using this solution to get the precise value of the condensate in the dual field
theory is subtle, but it should take a similar triangular lattice shape. More details of how this is
done can be found in [2].

5. Conclusion

In this work we have found a likely ground state for the Yang-Mills instability induced by
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Figure 4: The change in free energy density as a function of R = Lx/Ly, the ratio of side lengths of a
constant area lattice cell. This plot is for the AdS Schwarzschild model, but the plot for the hard wall model
is identical up to a rescaling of the axes. When R= 1, the lattice is square and the free energy achieves a local
maximum. When R =

√
3 and 1/

√
3, the lattice is triangular and the free energy is at a global minimum.

Figure 5: A contour plot of the modulus squared of the subleading term in the boundary expansion of Ex

for the ground state triangular lattice. The magnitude has been normalised to one. For the field theory
interpretation of this result, see [2].

an SU(2) magnetic field analysed in [1], as well as for a slightly different (hard wall) model. By
looking at our model as an approximation of QCD, it provides supporting evidence for the claims
of Chernodub et al. that the QCD vacuum with large magnetic fields is unstable to the creation of
ρ mesons. Being of a lattice form, it has much potential for analysis in condensed matter models
as well, where the breaking of translational invariance has already been shown to be important in
getting realistic phenomenology.

The two holographic models that we study have several important differences from QCD. In
the finite temperature model there is no confinement or chiral symmetry breaking and so there are
no goldstone bosons (pions) present, which are the normal decay modes of the ρ meson in QCD.
The hard wall model has its conformal symmetry broken only by an IR boundary condition which
sets a confinement scale. However, the phenomenology of these two models appears to be close
enough to that of QCD to compare qualitatively with the models of Chernodub et al.

In the present work we have analysed lattices with P≤ 2, corresponding to square and rhombic
forms, respectively. Going to P = 3 requires a large increase in computational power. While this
would be an interesting further calculation, the analogous cases of type II superconductivity and
the model of Chernodub et al. point to the triangular lattice being the true ground state. We thus

7



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
2
6
8

Holographic Superfluidity from a Magnetic Field Migael Strydom

expect higher P lattices to be energetically disfavoured.
It is expected that if the QCD vacuum is unstable to ρ meson condensation in extremely off-

centre heavy ion collisions, then the timescale of the instability would not be enough to form a well-
defined lattice. Abrikosov vortices may form, but the magnetic field would likely drop below the
critical value before they had time to arrange themselves into a lattice. It would be very interesting
to perform a real-time calculation in order study the formation of the vortices and their movements
as the magnetic field increased and decreased through the lifetime of a single off-centre collision.
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