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1. Introduction

The discovery of a scalar particle at the Large Hadron Collider (LHC) [1, 2] bears many

interesting consequences. If this scalar particle turns out not to be the standard model Higgs boson,

there would be a first indication about the physics beyond the standard model. If, on the other

hand, it will turn out to be the standard model Higgs boson, we have the possibility to determine

the energy scale up to which the standard model can be maximally valid.

The reason is that, due to triviality, in the standard model the cut-off cannot be removed.

However, theoretically, lower and upper bounds on the Higgs boson mass as a function of the

cut-off can be given. Therefore, once the Higgs boson mass is determined, it becomes possible

to compute the value of the cut-off where the Higgs boson mass becomes incompatible with the

theoretical mass bounds. This, in turn, will then provide the largest possible energy scale where

the standard model has to be replaced by some new, yet unknown physics.

In the light of a Higgs boson mass of 125−126GeV, it is in particular the lower Higgs boson

mass bound that can provide the values of the cut-off and hence the energy scale where new physics

beyond the standard model has to appear. In fact, within perturbation theory the SM could be valid

up to very high energies before violating the Higgs boson mass bounds, see ref. [3] for a recent

analysis at next-to-next leading order of perturbation theory.

When looking at the Higgs-Yukawa sector of the standard model, which is most relevant for

the Higgs boson mass bounds, in principle, the involved couplings of the theory, the quartic self-

interaction of the Higgs field and the Yukawa-coupling between the Higgs field and the fermions,

can grow strong. This happens, when the involved masses are large and then perturbation theory

might fail to analyze the theory. The Higgs boson mass bounds are indeed examples where the

applicability of perturbation theory is questionable. The first is the upper Higgs boson mass bound

which is based on triviality arguments [4]. Here the Higgs boson mass can become large, resulting

in a strong value of the quartic coupling such that perturbation theory may not work anymore. The

second is the lower Higgs boson mass bound which is based on vacuum instability arguments [5, 6,

7, 8]. Here it is unclear whether this instability is not an artefact of perturbation theory applied at

large values of the Higgs field such that an expansion around the minimum of the effective potential

is not justified anymore. Another example where non-perturbative calculations are necessary is the

possibility of a heavy fourth fermion generation [9, 10] which would lead to a large value of the

corresponding Yukawa coupling.

Therefore, it would be very desirable to have ab-initio, non-perturbative computations of the

Higgs boson mass bounds for which lattice field theory techniques would offer a computational

strategy to address possible non-perturbative effects. However, for many years such calculations

were blocked by the inability to implement a chiral symmetric Higgs-Yukawa interaction on a

lattice, as demanded by the continuum theory.

Conceptually clean investigations of Higgs-Yukawa models on the lattice became possible

when it was realised that –based on the Ginsparg-Wilson relation [11]– there exists a consistent

formulation of an exact lattice chiral symmetry [12], which emulates the chiral character of the

Higgs-fermion coupling structure of the SM. This triggered a number of lattice investigations of

Higgs-Yukawa like models [13, 14, 15, 16, 17, 18, 19, 20, 21].

A systematic investigation of the phase structure of the theory and Higgs boson mass bounds,
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including a study of the Higgs boson as a resonance, were carried through in refs. [16, 17, 19, 21,

22, 23], see also ref. [24] for a recent review. In this proceedings contribution, we will report about

the status of the calculations for the lower and upper Higgs boson mass bounds for fermion masses

covering the standard model top quark mass up to quark masses of about 700GeV.

2. The lattice model

One important ingredient of the Standard Model is the chiral structure of the scalar-fermion

interactions which should be kept on a 4-dimensional Euclidean space-time lattice. This has been a

long-standing obstacle to the lattice regularization of Higgs-Yukawa models and was finally over-

come by employing the Neuberger ‘Overlap’ [12, 25, 26] discretization of the fermion action.

Following the proposition in ref. [12] it is therefore possible to construct a lattice Higgs-

Yukawa model with a global SU(2)L ×U(1)Y symmetry. Specifically, the fields included in our

model are a scalar doublet ϕ and two fermions, the left-handed components of which are paired

into an SU(2) doublet. The lattice action can thus be written as

S = SF +Sφ , SF = ∑xy ψ̄x Mxy ψy, (2.1)

Sφ =−κ ∑x,µ Trφ†
x

[

φx+µ +φx−µ

]

+∑x Trφ†
x φx

+λ̂ ∑x Tr
(

φ†
x φx −1

)2
,

Mxy = Dov
xy12×2 + y

(

P+φ†
x P̂++P−φxP̂−

)

δxy,

where ψ is a doublet of four-component spinor fields, Dov is the free Overlap Dirac operator with a

Wilson kernel and φx denotes the scalar field represented by a complex 2⊗2 matrix. The left- and

right-handed projection operators P± and the modified projectors P̂± are given by

P± = 1±γ5

2
, P̂± = 1±γ̂5

2
, (2.2)

γ̂5 = γ5

(

1− 1
ρ Dov

)

.

The action introduced above obeys an exact global SU(2)L ×U(1)Y lattice chiral symmetry.

For ΩL ∈ SU(2) and θ ∈ [0,2π] the action is invariant under the transformation

ψ → UY P̂+ψ +UY ΩLP̂−ψ ,

ψ̄ → ψ̄P+Ω†
LU

†
Y + ψ̄P−U

†
Y ,

φ → UY φΩ†
L,φ

† → ΩLφ†U
†
Y (2.3)

with UY ≡ exp(iθY ), where Y labels the representation of the global hypercharge symmetry group

U(1)Y . It should be noted that in the continuum limit the (global) continuum SU(2)L×U(1)Y chiral

symmetry is recovered.

We can relate the parameters and fields appearing in Eq. 2.1 to those appearing in the standard

scalar complex doublet continuum Lagrangian (L = |∂µϕ |2 + 1
2
m2

0|ϕ |2 +λ |ϕ |4) by

ϕx =
√

2κ

(

φ2
x + iφ1

x

φ0
x − iφ3

x

)

, (2.4)

λ =
λ̂

4κ2
, m2

0 =
1−2λ̂ −8κ

κ
. (2.5)
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2.1 Observables

The cutoff in our model is provided by the inverse lattice spacing (Λ = 1/a) and we set the

physical value of Λ using the phenomenological Higgs field vacuum expectation value (vR),

(
√

2GF)
− 1

2 ∼ 246GeV =
vR

a
≡ v√

ZG ·a , (2.6)

where ZG denotes the Goldstone boson field renormalization constant and v the bare scalar field

vacuum expectation value. We target a mass range for the degenerate fermion doublet of 175GeV .

m f . 700GeV, while fixing the cutoff at Λ ≈ 1.5TeV. Although the masses of the fermion doublet

are degenerate in this work, we plan to assess the effect of a mass splitting in the near future. At

m f = mt = 175GeV the splitting mb −mt has been taken into account and found to have a small

effect on the lower Higgs boson mass bound which, moreover, can be taken into account by the

effective potential evaluated in lattice perturbation theory [19].

Details on the simulation algorithm, which is based on the Hybrid Monte Carlo algorithm [27]

and its extension of ref. [28], can be found in ref. [20].

It has been demonstrated [19] that the Higgs boson mass is a monotonically increasing function

of the bare quartic coupling λ̂ . Therefore, the lower bound for the Higgs boson mass at fixed cutoff

and m f is obtained at λ̂ = 0, while the upper bound is obtained at λ̂ = ∞ [21].

Since we work in a finite volume with no external symmetry breaking source, the naively

defined vacuum expectation value is zero in an ensemble average. We therefore follow the strategy

described and tested in refs. [29, 30, 31], of rotating a given scalar field configuration to a preferred

direction. It can be shown that in infinite volume this leads to the same vacuum expectation value

as obtained in the standard procedure involving the limit of vanishing external source [31].

The determination of the Goldstone boson renormalization constant ZG, the Higgs boson mass

mH , and the fermion mass m f have been discussed in detail in ref. [21] and are briefly reviewed

here. The renormalization constant ZG is computed from the slope of the inverse Goldstone bo-

son propagator at vanishing Euclidean four-momentum transfer, in the standard on-shell scheme.

Operationally, this constant is obtained from fits to the propagator at small momenta.

Due to the existence of massless Goldstone modes in the spontaneously broken phase of our

theory, the finite size effects are not exponential as it is the case in theories with a mass gap, but

algebraic. In particular, the finite size effects vanish with inverse even powers of the spatial extent

of the lattice. This is illustrated in fig. 1 at the examples of the renormalized scalar field expectation

value and the Higgs boson mass. The figure also shows that the finite size effects can be substantial

and that large lattices are required to perform a reliable infinite volume extrapolation which has

indeed been performed for all results discussed, if not indicated otherwise.

Another effect of the massless Goldstone modes is that the Higgs boson is unstable and can

decay to final states containing an even number of Goldstone bosons. We employ two definitions

of the Higgs boson mass which both ignore this finite decay width. The Higgs boson propagator

mass mP
H is derived from fits to the momentum space Higgs boson propagator defined as

G̃H(p) = 〈h̃ph̃−p〉, h̃p =
1

√

L3
s ·Lt

∑
x

e−ipxhx (2.7)

while the correlator mass mC
H is derived from fits to the Higgs boson temporal correlation function.

Although finite decay width corrections to these formulae are quite different, the mass extracted
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(a) Dependence of the renormalized vev vr = v/
√

ZG on the

squared inverse lattice side length 1/L2
s at infinite bare quar-

tic coupling constant.
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(b) Dependence of the Higgs boson propagator mass mH p

on the squared inverse lattice side length 1/L2
s at infinite bare

quartic coupling constant.

Figure 1: The dependence of the renormalized vev vr = v/
√

ZG and the Higgs boson propagator mass mH p

on the squared inverse lattice side length 1/L2
s is presented. In all plots the dashed curves display a quadratic

fit in 1/L2
s with lower threshold values L′

s = 16, while the solid lines depict the linear fits in 1/L2
s with lower

threshold values L′
s = 20.

from both of these procedures typically differs by less than 10%, lending credence to our approx-

imation of a stable Higgs boson. Furthermore, a rigorous study of the Higgs boson decay width

at non-vanishing external source has been performed at m f = mt ∼ 175GeV in ref. [23] which

obtained a narrow decay width for all values of the bare quartic coupling, further supporting the

validity of the stable Higgs boson approximation. For this work we quote mP
H as the central value

as it is typically the lowest estimate of mH .

Finally, we compute the quark mass from the exponential decay of the temporal correlation

function C f (t) at large Euclidean time separations t, defined as

C f (t) =
1

L6
s
∑
~x,~y

ReTr
(

fL,0,~x · f̄R,t,~y

)

, (2.8)

where the left- and right-handed spinors are defined using the projection operators in Eq. 2.2.

As an example, we show here the results of the Higgs boson mass bound calculations where

the upper and lower bounds were computed at several choices of the cut-off scale and fermion

masses m f . The main result is shown in fig. 2, where in the left graph, the situation for a SM top

quark mass is shown. The right graph shows, at a fixed value of the cut-off of 1.5TeV, the mass

dependence of the lower and upper Higgs boson mass bounds as a function of the fermion mass,

see also [22]. It can be clearly seen that while the upper bound is relatively unaffected when using

a heavy fermion mass, the lower bound increases substantially.

The graphs in fig. 2 have a very interesting interpretation concerning the validity of the SM and

the existence of a fourth fermion generation. For the SM, a Higgs boson mass of about 125GeV

just seems to escape the Higgs boson mass bounds leading the SM to be valid up to very high

5
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(a) The cut-off dependence of the upper and lower Higgs

boson mass bounds for a fermion mass at ∼ 173GeV.
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(b) The mass dependence of the lower and upper Higgs bo-

son mass bounds at a cut-off of about 1.5TeV. The solid line

represents a perturbative lattice effective potential calcula-

tion for the lower Higgs boson mass bound.

Figure 2: The cut-off and fermion mass dependence of the lower and upper Higgs boson mass bounds.

energies. On the other hand, in this scenario, a fourth fermion generation seems to be ruled out

for fermion masses larger than about 300GeV. Combining this with phenomenological analyses

of allowed fermion masses to be larger than about 500GeV, this indicates that a straightforward

extension of the SM with a fourth fermion generation is not compatible with the experimental

finding of a possible 125GeV Higgs boson mass.

As mentioned above, for the Higgs-Yukawa model considered here, the Higgs boson has also

been treated as a true resonance [23]. It was found that the Higgs boson resonance width does not

exceed about 10% of the resonance mass for all values of the quartic coupling considered. Thus,

the Higgs boson can be considered as a narrow resonance and the mass bounds shown in fig. 2,

which were obtained assuming a stable Higgs boson, are not affected by resonance effects.

3. Concluding remarks

In this proceedings contribution we have shown that lattice field theory can provide lower and

upper Higgs boson mass bounds. This is a remarkable result since for many years lattice computa-

tions within Higgs-Yukawa models were blocked by the difficulty to implement the continuum chi-

ral symmetric nature of the Higgs-fermion interaction. The situation only changed when, through

the Ginsparg-Wilson relation, a consistent formulation of a Higgs-Yukawa theory could be given.

Within this framework, we have here given bounds for the Higgs boson mass, see fig. 2. We

have found that the upper bound is only a mildly increasing function with increasing fermions. On

the other hand, the lower bound changes substantially when the fermion mass is increased. This

led then to the conclusion that a straightforward fourth fermion generation is excluded.
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An open question is, whether the lower Higgs boson mass bound can be altered by adding

higher dimensional operators. The key to answer this question is an analysis of the effective po-

tential, evaluated in lattice perturbation theory using the same lattice formulation as employed in

the numerical simulations. It has been found that for a standard model top quark mass such a per-

turbative calculation reproduces the simulation results very precisely [19]. When the fermion mass

is increased above the top quark mass, such an effective potential calculation still describes the

simulation results for the lower Higgs boson mass bound rather well, although not with the same

precision as for the case of the top quark mass, as can be seen in fig. 2(b) where the outcome of the

lattice effective potential calculation is represented with the solid line, see also ref. [24].

As a consequence, the lattice perturbative effective potential calculation can be used to study

the effect of a higher dimensional operator. Taken as an example a λ6φ6 term, a variation of λ6 in

the range λ6 = [0.0,0.1] results in a less than 15% difference in the lower bound. Thus, the lower

Higgs boson mass bound is rather unaffected by such higher dimensional operator. This stability of

the lower bound leaves then very little room for the existence of a straightforward fourth fermion

generation. Of course, this result from perturbation theory should be scrutinized by direct, non-

perturbative numerical simulations, a task we want to perform in the future.
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