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We continue the systematic computation of Landau gauge gluon and ghost propagators ofSU(2)

gluodynamics using a sequence of increasing lattice sizesL4 up toL = 112 with corresponding

β -values chosen to keep the linear physical sizea(β )L ≃ 9.6 fm fixed. To extremize the Lan-

dau gauge functional we employ simulated annealing combined with subsequent overrelaxation.

Renormalizing the propagators at momentumµ = 2.2 GeV we observe quite strong lattice arti-

facts for the gluon propagator as well as for the ghost dressing function within the momentum

regionq < 1.0 GeV. The dependence on the lattice spacing for the gluon propagator at lowest

accessible physical momentum values does not yet allow a simple extrapolation to the continuum

limit. On the contrary, the running coupling derived from the bare dressing functions seems less

affected by lattice artifacts.
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Continuum limit of propagators Igor Bogolubsky

β 2.3 2.3 2.3 2.3 2.4 2.45 2.5

L 40 56 80 112 80 96 112

NMC 45 187 78 173 314 333 477
Nghost - 24 - - 26 1 -

Z̃(µ = 2.2 GeV) - 0.414(3) - - 0.445(4) 0.452(2) 0.460(5)

Table 1: Parameters of the main simulations considered here. See also the text.
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Figure 1: Left: the unrenormalized gluon propagatorD(q2) and its fits according to Eq. (1); the data points
drawn atq2 = 0.001 represent the zero-momentum gluon propagatorD(0) values. Right: the ghost dressing
functionJ(q2). Both are shown for approximately equal physical volume ((aL)4

≃ (9.6fm)4) but different
β -values, i.e. discretization scalesa.

The aim of the reported study is to continue the systematic investigation ofSU(2) gluon and
ghost Landau gauge propagators on large lattices [1] in order to receive information from first
principles on the behavior of these propagators and of the running coupling in the continuum limit
for all momentaq including the infrared (IR) region. As in previous investigations [2], forsolving
the Gribov problem we assume the Landau gauge functional to be driven as close as possible
to its global extremum. Employing the standard Wilson plaquette action we have studied gluon
(D) and ghost (G) propagators for lattice sizesL4 with run parameters collected in Table 1. The
gluon propagator was computed usingNMC(β ,L) independent Monte Carlo (MC) configurations
generated with the given set of parameters, while the ghost propagator was calculated only on a
subset ofNghost(β ,L) MC configurations. We used the same procedures for Landau gauge fixing
and computation of propagators as described in [1], namely, we employed very long simulated
annealing (SA) runs followed by overrelaxation (OR) to obtain gauge copies with a gauge fixing
functional close to its global extremum for each MC configuration. In Fig. 1we show the results
for the bare gluon propagator (left) and the bare ghost dressing function (right) for fixed physical
volume (aL)4 but varying lattice scalea. For the gluon propagator we have drawn also curves
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β C A B E F G χ2/do f

2.3 1.164(3) 1.52(1) 0.11(3) 0.68(2) 0.502(4) 0.126(15) 1.03

2.4 1.195(2) 1.68(2) 1.1(3) 1.13(10) 0.60(3) 0.36(5) 2.73

2.45 1.148(11) 3.9(5) 99(34) 22(7) 12(4) 3.1(5) 0.28

2.5 1.127(8) 5.47(34) 210(33) 45(6) 25(4) 4.3(3) 1.20

Table 2: Results of the 6-parameter fits of the unrenormalized gluon propagator for variousβ corresponding
to lattices sizes 564, 804, 964 and 1124.

obtained from fits with the 6-parameter formula proposed in [3]

D(q) =C
q4+A2q2+B

q6+Eq4+Fq2+G2 . (1)

We found the resulting fit curves nicely to capture the IR turnover of the gluon propagator. The
χ2/do f values are close to unity in most cases (see Table 2). To obtain the renormalized gluon
propagatorDren(q,µ) = Z̃(a,µ)D(q,a) we apply the normalization conditionDren(µ ,µ) = 1/µ2.
Since the fit formula Eq. (1) nicely works throughout the whole momentum region we can use it to
carry out the renormalization at anyµ. Forµ = 2.2 GeV the renormalization factors̃Z are collected
in Table 1. Their values do not vary strongly which means that the bare dressing functions for the
differentβ -values approximately overlap at the givenµ-value. From Fig. 1 we can then conclude
also for the renormalized gluon propagatorDren(q2) and the renormalized ghost dressing function
Jren(q2) found for various lattice spacingsa(β ) to be compatible with the so-calleddecoupling
solutionof Dyson-Schwinger or functional renormalization group equations (see[4]). The numer-
ical values, however, ofDren(q2) andJren(q2) in the limit q → 0 appear to beβ - or a-dependent.
From such plots one can see that the convergence of the renormalized lattice propagators / dressing
functions in the deep IR momentum range to the respective continuum counterpart, that should be
observed for decreasinga(β ), is rather slow. For their direct numerical study near the continuum
limit one has to use rather largeβ -values which consequently requires simulations on unrealisti-
cally huge lattices, which are not accessible today even on most powerfulparallel supercomputers.
Instead, we can try to make contact with the continuum limit by extrapolatingDren(q2,a) to the
zero-a limit as done e.g. in [5] forSU(3) and non-zero temperature. In Fig. 2 (left) we plot the
a-dependence of latticeDren(q2) for several selected values ofq2. We see the lower the momentum
is the less well-defind the convergence fora→ 0 becomes. For getting reliable numerical values
of SU(2) gluon and ghost propagators in the continuum limit more work is needed. Although
the ghost dressing functionJ(q2) has been computed only for a subset of MC configurations (see
Table 2), it provided useful quantitative information, see Fig. 1 (right). Even a single MC con-
figuration as forL = 96 already seems to yield a first estimate (a fast decrease of the statistical
fluctuations ofJ(q2) with increasingL was first observed for theSU(3) case in [6]). Our analysis
shows in the deep IR region that, whileDren(q2) increases withβ , Jren(q2) decreases. More details
will be published elsewhere.
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Figure 2: Left: Renormalized gluon propagatorDren(q2) atµ = 2.2 GeV versus lattice spacinga for various
physical momentaq2 (values indicated in units GeV2). Right: Running coupling forβ = 2.3, β = 2.4 and
β = 2.45
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Figure 3: Check of systematic errors.Left: The unrenormalizedD(q2) computed forβ = 2.3 and various
L. Right: D(q2) for 2 different SA schedules atβ = 2.4 andL = 80.

We have checked whether the differences of propagator values in the deep IR could be com-
pensated by other systematic effects. From Fig. 3 (left) one can see that finite-volume effects are
small if the linear physical size isa(β )L ≃ 9.6 fm or even larger. What concerns Gribov copy
artifacts atβ = 2.4 andL = 80 we have compared the results of two sets of SA+OR gauge fixing
simulations: (i) one gauge copy fixing with 9600 SA sweeps ("SA1 schedule") (NMC = 314) and
(ii) "best of two copies" gauge fixing with 12000 SA sweeps each ("SA2 schedule")(NMC = 187).
For details see, e.g., Ref. [7]. SA1 and SA2 results obtained for unrenormalized gluon propagators
are plotted in Fig. 3 (right). We have found that the differences between these cases are much
smaller than the magnitude of Gribov copy effects measured in [1] as difference between results
of one-copy SA+OR and one-copy OR gauge-fixing procedures. Our analysis shows that further
“improvement” of SA schedules could not changeDren(q2) essentially and hence noticeable dif-
ferences ofDren(q2) values in the deep IR region found for differentβ -values certainly cannot be
accounted for by the Gribov copy effect.
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With the bare gluon (Z(q2)) and ghost (J(q2)) dressing functions at hand one can easily com-
pute the running coupling in the minimal MOM scheme [8],

αs(q
2) =

g2
0

4π
J2(q2) Z(q2).

The dependence of the resulting curves onβ or a turns out to be rather weak even in the deep
IR momentum region (see Fig. 2 (right)), i.e. the lattice artifacts of the gluon andghost dressing
functions cancel each other to some extent.

We conclude that naive multiplicative renormalizability for theSU(2) Landau gauge gluon and
ghost propagators gets violated in the deep IR region. Due to the slow convergence of gluon and
ghost renormalized propagators their continuum counterparts may strongly differ in the deep IR
momentum region from what we have obtained here in lattice simulations with admissible values
of β = 4/g2

0. At the same time, the physically important renorm-invariant minimal MOM-scheme
running couplingαs(q2) seems to reach a continuum behavior much earlier.

IB thanks Prof. A. A. Slavnov for a useful discussion of the results. Simulations have been
done on the MVS100K supercomputer of the Joint Supercomputer Centre (JSCC, Moscow).
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