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We continue the systematic computation of Landau gaugengind ghost propagators 8tJ(2)
gluodynamics using a sequence of increasing lattice $izefp toL = 112 with corresponding
B-values chosen to keep the linear physical sig@)L ~ 9.6 fm fixed. To extremize the Lan-
dau gauge functional we employ simulated annealing condbivith subsequent overrelaxation.
Renormalizing the propagators at momentur- 2.2 GeV we observe quite strong lattice arti-
facts for the gluon propagator as well as for the ghost dngsiinction within the momentum
regiong < 1.0 GeV. The dependence on the lattice spacing for the gluopagetor at lowest
accessible physical momentum values does not yet allow glsiextrapolation to the continuum
limit. On the contrary, the running coupling derived frone thare dressing functions seems less
affected by lattice artifacts.
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B 2.3 2.3 23 2.3 2.4 2.45 25
L 40 56 80 112 80 96 112
Nmc 45 187 78 173 314 333 477
Nghost - 24 - - 26 1 -
Z([.l =22GeV) - 0.414(3) - - 0.445(4) 0.452(2) 0.460(5)

Table 1: Parameters of the main simulations considered here. Se¢halsext.
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Figure1: Left: the unrenormalized gluon propagalifg?) and its fits according to Eq. (1); the data points
drawn afg? = 0.001 represent the zero-momentum gluon propadatoy values. Right: the ghost dressing
functionJ(g?). Both are shown for approximately equal physical volunial()* ~ (9.6fm)%) but different
B-values, i.e. discretization scalas

The aim of the reported study is to continue the systematic investigatiSb)@) gluon and
ghost Landau gauge propagators on large lattices [1] in order toveendormation from first
principles on the behavior of these propagators and of the runningdicgupthe continuum limit
for all momentag including the infrared (IR) region. As in previous investigations [2],dolving
the Gribov problem we assume the Landau gauge functional to be drivefose as possible
to its global extremum. Employing the standard Wilson plaquette action we havedstyldon
(D) and ghost G) propagators for lattice sizés' with run parameters collected in Table 1. The
gluon propagator was computed usiNgc(S3,L) independent Monte Carlo (MC) configurations
generated with the given set of parameters, while the ghost propagasocailculated only on a
subset 0MNghost 3,L) MC configurations. We used the same procedures for Landau gairgg fix
and computation of propagators as described in [1], nhamely, we empl@&gdong simulated
annealing (SA) runs followed by overrelaxation (OR) to obtain gaugéesopith a gauge fixing
functional close to its global extremum for each MC configuration. In Figelshow the results
for the bare gluon propagator (left) and the bare ghost dressingidar(cight) for fixed physical
volume (aL)* but varying lattice scal@. For the gluon propagator we have drawn also curves
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B C A B E F G x?/dof
23 1.164(3) 1.52(1) 0.11(3) 0.68(2) 0.502(4) 0.126(15) 1.03
24 1.195(2) 1.68(2) 1.1(3) 1.13(10) 0.60(3) 0.36(5) 2.73
245 1.148(11) 3.9(5) 99(34)  22(7) 12(4) 3.1(5) 0.28
25 1.127(8) 5.47(34) 210(33) 45(6) 25(4) 4.3(3) 1.20

Table 2: Results of the 6-parameter fits of the unrenormalized gluopamator for varioug corresponding
to lattices sizes 56 80%, 96* and 112.

obtained from fits with the 6-parameter formula proposed in [3]

o'+ A2 +B

D@ =Co Ef g a2

(1)

We found the resulting fit curves nicely to capture the IR turnover of thergpropagator. The
x?/dof values are close to unity in most cases (see Table 2). To obtain the reneangllion
propagatoDren(q, 1) = Z(a, 4)D(q,a) we apply the normalization conditidBren(ut, 1) = 1/ 2.
Since the fit formula Eq. (1) nicely works throughout the whole momentuiomege can use it to
carry out the renormalization at apy For u = 2.2 GeV the renormalization factorsare collected

in Table 1. Their values do not vary strongly which means that the bassidgefunctions for the
different 8-values approximately overlap at the givervalue. From Fig. 1 we can then conclude
also for the renormalized gluon propagalhgn(g?) and the renormalized ghost dressing function
Jren(g?) found for various lattice spacingg) to be compatible with the so-calletecoupling
solutionof Dyson-Schwinger or functional renormalization group equations[¢deeThe numer-

ical values, however, dDren(g?) andJren(g?) in the limit g — 0 appear to b¢- or a-dependent.
From such plots one can see that the convergence of the renormalizedpatii@gators / dressing
functions in the deep IR momentum range to the respective continuum goarttéhat should be
observed for decreasiraf3), is rather slow. For their direct numerical study near the continuum
limit one has to use rather larg&values which consequently requires simulations on unrealisti-
cally huge lattices, which are not accessible today even on most powarhllel supercomputers.
Instead, we can try to make contact with the continuum limit by extrapol@iggg?,a) to the
zeroa limit as done e.g. in [5] folSU(3) and non-zero temperature. In Fig. 2 (left) we plot the
a-dependence of lattidgren(g?) for several selected values@f. We see the lower the momentum
is the less well-defind the convergence &+ 0 becomes. For getting reliable numerical values
of SU(2) gluon and ghost propagators in the continuum limit more work is needed. ugtho
the ghost dressing functiai{g?) has been computed only for a subset of MC configurations (see
Table 2), it provided useful quantitative information, see Fig. 1 (rightyerEa single MC con-
figuration as forL = 96 already seems to yield a first estimate (a fast decrease of the statistical
fluctuations ofJ(g?) with increasing. was first observed for th8U(3) case in [6]). Our analysis
shows in the deep IR region that, whidgen(g?) increases witt, Jen(g?) decreases. More details
will be published elsewhere.
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Figure2: Left: Renormalized gluon propagatren(q?) atu = 2.2 GeV versus lattice spaciragor various

physical momenta? (values indicated in units Gey. Right: Running coupling fo3 = 2.3, 8 = 2.4 and
B =245
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Figure 3: Check of systematic errord. eft: The unrenormalize®(g?) computed foig = 2.3 and various
L. Right: D(q?) for 2 different SA schedules #& = 2.4 andL = 80.

We have checked whether the differences of propagator values ireépel& could be com-
pensated by other systematic effects. From Fig. 3 (left) one can seenitetvblume effects are
small if the linear physical size ia(B)L ~ 9.6 fm or even larger. What concerns Gribov copy
artifacts atB = 2.4 andL = 80 we have compared the results of two sets of SA+OR gauge fixing
simulations: (i) one gauge copy fixing with 9600 SA sweeps ("SA1 sch&d(Mgc = 314) and
(i) "best of two copies" gauge fixing with 12000 SA sweeps each ("S#k2dule")(Nvc = 187).
For details see, e.g., Ref. [7]. SA1 and SA2 results obtained for unmediaed gluon propagators
are plotted in Fig. 3 (right). We have found that the differences betwessetbases are much
smaller than the magnitude of Gribov copy effects measured in [1] as differeetween results
of one-copy SA+OR and one-copy OR gauge-fixing procedures.a@alysis shows that further
“improvement” of SA schedules could not charidgn(g?) essentially and hence noticeable dif-
ferences oDren(g?) values in the deep IR region found for differgvvalues certainly cannot be
accounted for by the Gribov copy effect.
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With the bare gluonZ(g?)) and ghostJ(g?)) dressing functions at hand one can easily com-
pute the running coupling in the minimal MOM scheme [8],

2
as(a?) = 40 F(eP) 2(c?).

The dependence of the resulting curvesfor a turns out to be rather weak even in the deep

IR momentum region (see Fig. 2 (right)), i.e. the lattice artifacts of the gluorghodt dressing

functions cancel each other to some extent.

We conclude that naive multiplicative renormalizability for 8lg(2) Landau gauge gluon and
ghost propagators gets violated in the deep IR region. Due to the slowrgaemce of gluon and
ghost renormalized propagators their continuum counterparts may Istaiffgr in the deep IR
momentum region from what we have obtained here in lattice simulations with adimigaibes
of B = 4/g3. Atthe same time, the physically important renorm-invariant minimal MOM-scheme
running couplingxrs(g?) seems to reach a continuum behavior much earlier.

IB thanks Prof. A. A. Slavnov for a useful discussion of the resulisaufations have been
done on the MVS100K supercomputer of the Joint Supercomputer Ca8ie£, Moscow).
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