

PoS

Exotic hadron holography from anomalous dimensions

Hilmar Forkel*

Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany, and Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany E-mail: forkel@physik.hu-berlin.de

The anomalous dimensions of hadronic interpolators contain dynamical information on the properties of the associated hadron states. We point out that they provide, in particular, a link by which gauge-invariant information on exotic contributions to hadronic wavefunctionals can be obtained from approximate gravity duals for QCD. This is demonstrated by the holographic description of a dominant tetraquark component in the lightest scalar mesons.

Xth Quark Confinement and the Hadron Spectrum, October 8-12, 2012 TUM Campus Garching, Munich, Germany

*Speaker.

While the anomalous dimensions of color-singlet operators play a central role in the original, conformal versions of the gauge/string correspondence [1], they have only recently begun to enter holographic approaches to QCD. In particular, anomalous dimensions of hadronic interpolators were implemented to provide an AdS/QCD [2] description of quark correlations inside hadrons [3, 4] which can have a significant and in exotic cases even striking impact on the hadron properties. Although multiquark components in hadronic wave functionals are typically gauge dependent, a holographic description is still possible because the five-dimensional bulk modes are dual to the interpolators of the corresponding hadrons. Hence the anomalous dimensions of these interpolators import gauge-invariant information on their quark content and couplings, and thus on the multiquark correlations in the corresponding hadron, as bulk-mode mass corrections into the gravity dual.

This AdS/QCD representation of multiquark effects was originally introduced to describe diquark correlations in baryons [3]. It changes the resulting light-quark baryon excitation spectrum into

$$M_{n,L}^2 = 4\lambda^2 \left(n + L + \frac{3}{2} \right) - 2 \left(M_\Delta^2 - M_N^2 \right) \kappa \tag{1}$$

(where λ is the IR scale of the "metric soft-wall" gravity dual [5] while *n* (*L*) denotes the radial (angular momentum) excitation level). The second term, proportional to the baryon's "good-diquark fraction" κ , is generated by suitable anomalous dimensions for the QCD nucleon interpolators. Equation (1) describes the linear square-mass trajectories of the over 40 measured nucleon and delta (with $\kappa = 0$) resonances with unprecendented accuracy. The dual mode solutions further reveal that baryons with larger κ have a smaller size.

Encouraged by these results, the anomalous-dimension-induced representation of multiquark correlations was then applied to the more challenging holographic description of exotic hadrons with a non-standard (valence) quark content. The light scalar meson sector [6] with its expected tetraquark component [7] was examined in Ref. [4]. The radial bulk equation for the modes dual to the scalars can be written as the Sturm-Liouville problem $\left[-\partial_z^2 + V(z)\right]\phi(q,z) = q^2\phi(q,z)$. In the dilaton soft-wall gravity dual [8] without anomalous-dimension contributions, the potential *V* has the form

$$V(z) = \left(\frac{15}{4} + m_5^2 R^2\right) \frac{1}{z^2} + \lambda^2 \left(\lambda^2 z^2 + 2\right).$$
⁽²⁾

The anomalous dimension $\gamma(z)$ of the tetraquark interpolator $J_{\bar{q}^2q^2}$ (i.e. the local four-quark operator which most strongly couples to the tetraquark state) with scaling dimension $\Delta_{\bar{q}^2q^2} = 6 + \gamma(z)$ adds the universal contribution

$$\Delta V(z) = \gamma(z) \left[\gamma(z) + 8 \right] \frac{1}{z^2} \tag{3}$$

to the potential (2) with $m_5^2 R^2 = 12$. Eq. (3) implies the crucial lower bound $\Delta V(z) \ge -16/z^2$ which holds for any γ and prevents the collapse of the dual modes into the AdS₅ boundary. This bound is saturated by $\gamma \equiv -4$ and therefore determines the lightest tetraquark mass

$$M_{\tilde{q}^2 q^2, 0} \ge M_{\Delta=2, 0} = 2\lambda \tag{4}$$

which the anomalous-dimension-induced holographic binding mechanism can produce. Moreover, for constant values $-4 < \gamma < -3$ the tetraquark ground state is lighter than its $\bar{q}q$ counterpart. Since

 γ only enters through the mass term of the bulk mode which is model-independently prescribed by the AdS/CFT dictionary, the correction (3) and the associated binding mechanism will arise in other AdS/QCD duals as well.

To estimate the quantitative impact of the anomalous-dimension contribution ΔV (until direct QCD information on the RG flow of γ will eventually become available and fix ΔV uniquely), a typical power ansatz $\gamma(z) = -az^{\eta} + bz^{\kappa}$ can be adopted. Its coefficients turn out to be tightly constrained by consistency and stability requirements but can still produce almost maximal ground-state binding [4]. The latter drives the mass $M_{\bar{q}^2q^2,0}$ of the lightest tetraquark from ~ 40% above (for $\gamma \equiv 0$) down to ~ 20% below the $\bar{q}q$ ground-state mass $M_{q\bar{q},0} = \sqrt{6}\lambda$. The resulting masses $M_{\bar{q}^2q^2,n}$ of the tetraquark excitations get pushed beyond the corresponding $M_{\bar{q}q,n}$ from around $n \gtrsim 2$. The higher-lying radial tetraquark excitations will therefore likely be broad enough to prevent the appearance of supernumeral states in the scalar meson spectrum.

It should be interesting to extend the anomalous-dimension-based holographic description of non-valence quark components to other exotics, including heavy tetraquarks, pentaquarks and hybrids. Moreover, anomalous-dimension-induced corrections also encode other aspects of hadronic structure which largely remain to be explored.

Acknowledgments

It is a pleasure to thank the organizers for a very informative and enjoyable conference.

References

- [1] O. Aharony et al., Large-N field theories, string theory and gravity, Phys. Rep. 323 (2000) 183.
- Y. Kim and D. Yi, *Holography at work for nuclear and hadron physics*, Adv. High Energy Phys. 2011 (2011) 259025; S.J. Brodsky and G.F. de Téramond, *AdS/CFT and Light-Front QCD*, arXiv:0802.0514.
- [3] H. Forkel and E. Klempt, *Diquark correlations in baryon spectroscopy and holographic QCD*, Phys. Lett. **B 679** (2009) 77.
- [4] H. Forkel, Light scalar tetraquarks from a holographic perspective, Phys. Lett. B 694 (2010) 252; Multiquark correlations in light mesons and baryons from holographic QCD, AIP Conf. Proc. 1388 (2011) 182 [arXiv:1103.3902].
- [5] H. Forkel, M. Beyer and T. Frederico, Linear square-mass trajectories of radially and orbitally excited hadrons in holographic QCD, JHEP 07 (2007) 077; Linear meson and baryon trajectories in AdS/QCD, Intl. J.Mod. Phys. E 16 (2007) 2794.
- [6] E. Klempt and A. Zaitsev, *Glueballs, hybrids, multiquarks Experimental facts versus QCD inspired concepts,* Phys. Rep. **454**, 1 (2007); C. Amsler and N.A. Törnqvist, *Mesons beyond the naive quark model,* Phys. Rep. **389**, 61 (2004); D.V. Bugg, *Four sorts of meson,* Phys. Rept. **397**, 257 (2004); E. Ruiz Arriola and W. Broniowski, *Scalar-isoscalar states in the large-N_c Regge approach,* Phys. Rev. D. **81** (2010) 054009.
- [7] R.L. Jaffe, Phenomenology of Q²Q² mesons, Phys. Rev. D 15, 267, 281 (1977); J.R. Peláez, Nature of light scalar mesons from their large-N_c behavior, Phys. Rev. Lett. 92 (2004) 102001.
- [8] A. Karch, E. Katz, D.T. Son and M.A. Stephanov, *Linear Confinement and AdS/QCD*, Phys. Rev. D 74 (2006) 015005.