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Large order behavior of Wilson loops from NSPT

Ernst-Michael Ilgenfritz∗†

Veksler and Baldin LHEP, JINR, Dubna 141980 Russia
E-mail: ilgenfri@lhep.jinr.ru

Following numerical stochastic perturbation theory, we have performed Langevin simulation of

Wilson loops [1]. This allows us insight into perturbation theory for Wilson loops to very high

order. Thus, we are able to exclude a factorial rise of the coefficients of the expansion ing2.

We propose a model parametrization in terms of the hypergeometric function2F1 to facilitate the

summation (within some radius of convergence). We discuss the possibilities to speed up the

convergence of the series within boosted perturbation theory. Together with results from standard

Monte Carlo simulation, the detailed knowledge of perturbation theory enables us to assess the

nonperturbative part of Wilson loops and to estimate the gluon condensate.

Xth Quark Confinement and the Hadron Spectrum,
October 8-12, 2012
TUM Campus Garching, Munich, Germany

∗Speaker.
†for the complete list of contributing authors, see [1].

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
3
0
1

Wilson loops to large order Ernst-Michael Ilgenfritz

What is the nonperturbative part of an observable, if it has aperturbative expansion like
OPT ∼ ∑n cng2n ? One possible answer isONP = OMC −OPT. When the convergence is - mostly -
asymptotic, the question remains to be answered: At which order should one truncate a perturba-
tive series ing2 ? Narison and Zakharov [2] have discussed the impact of choosing between short
and long perturbative series on the determination of the gluon condensate(s). How can one get a
global view of the behavior of a perturbative series, say, for Wilson loops ? Numerical Stochastic
Perturbation Theory (NSPT) [3, 4] allows to address this problem.

First studies using NSPT up to 8-th order [5] and up to 10-th order [6] have been analyzed
following the renormalon paradigm assuming that the expansion coefficients can be modelled by
a renormalon ansatz,cn ∼ C1(C2)

nΓ(n+C3). A reanalysis of the 10-th order results [7] gave
arguments against the renormalon scenario, finally also against a non-vanishing 2-nd order gluon
condensate. Now, our paper [1] describes the perturbative behavior of Wilson loops up to 20-th
order, confirming the results of [7] and allowing a model for summing the series, however with a
finite radius of convergence.

NSPT [3, 4] is based on Langevin simulation, in the case at hand for the Wilson action. It
realizes a stochastic evolution of the links of the lattice (backed by stochastic gauge fixing) :

∂
∂τ

Ux,µ (τ ;η) = i
{

∇x,µSW[U ]−ηx,µ(τ)
}

Ux,µ(τ ;η) (1)

with the forceFx,µ [U,η ] = ε ∇x,µ SW[U ]+
√

ε ηx,µ corresponding to the actionSW. One has to take
the limit of vanishing time stepε in all observables obtained by Langevin averaging. Consider the
links and the force expanded in orders ofg, say,Ux,µ = 1+ ∑m>0U (m)

x,µ gm. Then a hierarchy of
Langevin updates results, where the white noiseη enters through the lowest orderF (1) :

U (1)(n+1) = U (1)(n)−F(1)(n)

U (2)(n+1) = U (2)(n)−F(2)(n)+
1
2
(F(1)(n))2−F(1)(n)U (1)(n) etc. (2)

From the expansion of links one gets the expansion of Wilson loops of rectangular shapeN×M [1]

WNM[U ] = ∑
n=0,1/2,1,3/2,...

W(n)
NM g2n =

1
3

Tr ∏
(x,µ)∈(N×M)

[

∑
mx,µ≥0

U
(mx,µ)
x,µ gmx,µ

]

. (3)

The Domb-Sykes plot [8] characterizes the large-n behavior of a series∑ncng2n, showing the
ratio of subsequent coefficientsrn = cn/cn−1 as a function of 1/n. A straight line signals a power-
like singularity

(

1−ug2
)γ

with the radius of convergence 1/u : rn = u(1− (1+ γ)/n). A small
curvature can be accounted for by the modification :(1+γ)/n→ (1+γ)/(n+s). Horsley et al. [7]
(based on 10 orders of NSPT [6]) had fitted the plaquette withu = 0.961(9), γ = 0.99(7) and
s= 0.44(10) (see Fig. 1 left).

Now, based on 20 orders accessible by NSPT [1], we found the fitfor small loopsWNM :

rn =
cn

cn−1
= u

(

1− 1+ γ
n

)

+
p

n(n+s)
.

This result can be recursively used forn> n0, starting from any numerically foundcn0. All this can
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Figure 1: Left: Domb-Sykes plot for the plaquette, compared with the prediction of 2001 [7], based on data
for n≤ 10. Right: Comparison of the coefficients of the naive (red) and the boosted series (blue) forW11.

be summarized by a “Hypergeometrical Model” forW11, W21, W22 andW31 [1]

W(n0)
NM,∞ = 1+

n0

∑
n=1

(cn−dn0Anun) g2n +dn0

[

2F1
(

σ − τ −1,σ + τ −1;s+1;ug2)−1
]

with a common inverse convergence radiusu = 0.9694 (βc ≈ 5.82). Here areσ = (s+ 3− γ)/2
andτ =

√

(γ +s+1)2−4p/u/2 entering the arguments.

Boosted perturbation theory can speed up the convergence.g2
b = g2/W11(g,n∗) is the boosted

coupling defined in terms of the truncated perturbative plaquetteW11(g,n∗) = 1+ ∑n∗
n=1W(n)

11 g2n.

The sumW11(g,n∗) is called “naive series” truncated atn∗. ThenWNM,b(gb,n∗)= 1+∑n∗
n=1W(n)

NM,bg2n
b

is called “boosted series” truncated atn∗. The latter converges much more rapidly, although the
boosted couplinggb is larger thang. The coefficientsW(n)

NM,b of the boosted series are calculated by
equatingWNM(g,n∗) = WNM,b(gb,n∗).

A precise separation of the non-perturbative part of Wilsonloops requires a very high order
of PT. We have employed boosting using the hypergeometric model to smooth the input obtained
from NSPT and to get coefficients beyondn∗ = 20. The boosted coupling is computed equating
(smoothed) series up ton∗ = 40. Fig. 1 (right) shows the corresponding coefficients forW11 for the
bare and boosted coupling.

For the special case of the plaquette the relation to the gluon condensate〈(α/π)GG〉 is

a4π2

36

(−b0g3

β (g)

)

〈α
π

GG
〉

= W11,b(gb,n
∗)−W11,MC ≡ ∆W11

up to eventualO(a2) or O(a8) contributions (see Figure 2 left). We obtain for the quarticgluon
condensate

〈α
π

GG
〉

= 0.028(3) GeV4

to be compared with the SVZ value of 0.012 GeV4. Our number agrees within errors with the esti-
mate 0.024(8) GeV4 based on a study of heavy quarkonia mass splittings [9]. For full information
the original paper [1] should be consulted.
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Figure 2: Left: ∆W11 (parametrized as∆W11 = c2a2+c4a4) as function ofa4. There is not much room for an
A2 condensate. Right: The coefficientsc4(n∗) for different Wilson loops as functions of 1/n∗. The plateau
reached forn∗ > 30 agrees well with the limit from the hypergeometric model (1/n∗ = 0).
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