
P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
 
X
)
3
2
1

Excited state systematics in extracting nucleon
electromagnetic form factors from the lattice

S. Capitani1,2, M. Della Morte3, G. von Hippel1, B. Jäger1,2, B. Knippschild1,
H.B. Meyer1,2,T.D. Rae∗†1, H. Wittig1,2

1 PRISMA Cluster of Excellence and Institut für Kernphysik, Becher-Weg 45, University of
Mainz, D-55099 Mainz, Germany
2 Helmholtz Institute Mainz, University of Mainz, D-55099 Mainz, Germany
3 IFIC, c/ Catedrático José Beltrán, 2, 46980 Valencia, Spain
E-mail: thrae@uni-mainz.de

Nucleon form factors are central observables of hadronic physics and provide details of the
nucleon’s distribution of charge and magnetisation. Currently, lattice simulations fall short of the
accuracy achieved by experiment. Furthermore, the simulations of the nucleon electromagnetic
form factor fail to reproduce experimental results [1, 2]; thus it is important to ensure that
systematic effects are under control in lattice simulations.

We present recent results for the nucleon electromagnetic (EM) form factors using lattice
QCD, including the determination of the charge radii. The standard approach is to extract the
form factors via a plateau fit to the lattice data using a ‘large-enough’ time separation between the
operators at the source and sink. To check that this removes excited state contaminations to an
acceptable level, we employ two further extraction methods: a fit that explicitly accounts for the
contamination; and the use of a summed operator insertion, which suppresses the contamination.
A comparison of the methods allows for the study of systematic effects related to excited state
contributions entering in the Q2 dependence of the form factors. This work (also presented in [3])
provides an update on results previously presented in [4] and follows the methodology used in a
recent study of the nucleon’s axial form factor [5]. Similar methods have been used in [6]. Our
simulations use non-perturbatively O(a) improved Wilson fermions in N f = 2 QCD, measured
on the CLS ensembles. Further details of the lattice ensembles used may also be found in [3].
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The matrix element of a nucleon interacting with an EM current V µ may be decomposed as:

〈N(p′,s′)|Vµ |N(p,s)〉= ū(p′,s′)
[

γµF1(Q2)+ i
σµνqν

2mN
F2(Q2)

]
u(p,s), (1)

where F1 and F2 are the Dirac and Pauli form factors. These form factors are related to the Sachs
form factors, GE and GM, that are measured in scattering experiments via the differential cross
section. The lattice calculation1 of the form factors requires a ratio of correlation functions,

Rγµ
(~q, t, ts) =

C3,γµ
(~q, t, ts)

C2(~0, ts)

√
C2(~q, ts− t)C2(~0, t)C2(~0, ts)

C2(~0, ts− t)C2(~q, t)C2(~q, ts)
. (2)

C2(~p, t) and C3,γµ
(~q, t, ts) are two- and three-point functions respectively containing suitably chosen

interpolating operators with the correct quantum numbers to create a nucleon and, in the case of
the three-point function, also the conserved/local vector current. GE and GM may be extracted for
large t:

Rγ0(~q) = GE(Q2)
√

(M+E)/2E, Rγi(~q) = εi j p j GM(Q2)
√

1/(2E(E +M)). (3)

Correlation functions must have reached their asymptotic behaviour for a reliable and unbiased
determination of the form factors. However, we observe exponentially decaying excited states from
both the source and sink. Therefore, simple plateau fits show a trend towards higher values for small
source-sink separations, i.e. for decreasing ts. To control systematics, it is important to take these
excited states into account. Contributions to the ratio from the ground and excited states may be
factorised, R(~q, t, ts) = R0(~q, t, ts)(1+O(e−∆t)+O(e−∆′(ts−t))), where ∆ and ∆′ are the excitation
energies of the initial and final nucleons respectively. We can take the excited states into account
using a fit to R(~q, t, ts) = GE,M +b1e−∆t +b2e−∆(ts−t)+b3e−∆ts , where we assume ∆ = ∆′ and we fix
∆ = 2mπ . An alternative that is not based upon this assumption, uses summed operator insertions
[7]:

S(ts) =
ts

∑
t=0

R(~q, t, ts)→ c(∆,∆′)+ ts
(

GE,M +O
(
e−∆ts

)
+O

(
e−∆′ts

))
. (4)

This allows the form factors to be extracted from the slope, by computing S(ts) for several ts,
resulting in more suppressed excited states because ts > t,(ts− t).

In order to model the Q2 dependence of the form factors, a dipole ansatz is adopted, from
which the charge radius is extracted. We may obtain the magnetic moment µ from GM(0) or

GE,M(Q2) = GE,M(0)
/(

1+Q2
/

M2
E,M

)2
, µ = lim

Q2→0

GM(Q2)

GE(Q2)
. (5)

Thus far, we have sketched the methodology commonly employed to extract form factors on
the lattice. Using this, we study the systematics of the extraction by separately employing the three
analyses described above: a plateau fit (for the largest ts), a simultaneous excited state fit to t and
ts and the summation method. A comparison of the three methods in fig. 1 (left panel) shows that

1We concentrate on the conserved vector current (as this removes the need for renormalisation of the lattice oper-
ators) and consider the iso-vector case, for which quark-disconnected diagrams cancel. To improve the overlap of the
interpolating operators with the nucleon, we use Gaussian smearing at both the source and sink and HYP smeared links.
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Figure 1: Left panel: Results for our most chiral (mπ = 277 MeV) lattice. The top two panels show the Q2

dependence for GE and GM . The bottom panel shows a determination of the magnetic moment, µ . This is
shown for the three extraction methods. Right panel: Chiral extrapolation of the Dirac radius to the physical
point (vertical black line) using 〈r2

1〉= c1 +c2 log(m2
π) using the largest ts plateau-fit (blue) and excited state

fit (red) for the extraction. The horizontal black line shows the experimental result. The different symbols
indicate the lattice spacing (see legend) and the leftmost two points show our extrapolated values.

whilst all three methods agree within statistical errors, we observe a systematic trend for better
agreement between the two methods that account for excited state effects. This is echoed in all
of our ensembles (mπ = 277 to 649 MeV). In order to perform an extrapolation in the pion mass
to the physical point, we model the chiral behaviour of the radii using a HBχPT inspired fit [8].
Fig. 1 (right panel) compares the determination of the Dirac radius 〈r2

1〉 from an excited state fit
with the plateau fit. We observe an increase in the central value for all but one ensemble and also
that the difference increases as the pion mass decreases (excited states are expected to contribute
more for more chiral mπ ), resulting in a larger radius closer to the experimental result. We have
also looked at κ = µ − 1 and 〈r2

2〉, for which we see a similar behaviour. These are however all
at the preliminary stage. The large statistical errors for all methods highlight the need for greater
statistics and for more chiral points to be added. Monte Carlo ensembles exist for more chiral
points (the lightest ∼ 200 MeV), but are yet to be analysed. The results indicate the importance of
excited states and that they should be a consideration in studies of potential systematic effects.

References

[1] C. Alexandrou, PoS LATTICE 2010 (2010) 001 [arXiv:1011.3660 [hep-lat]].

[2] D. B. Renner, PoS LAT 2009 (2009) 018 [arXiv:1002.0925 [hep-lat]].

[3] S. Capitani, M. Della Morte, et al., PoS LATTICE 2012 (2012) 177 arXiv:1211.1282 [hep-lat].

[4] S. Capitani, B. Knippschild, et al., PoS LATTICE 2010 (2010) 147 [arXiv:1011.1358 [hep-lat]].

[5] S. Capitani, M. Della Morte, et al., Phys. Rev. D 86 (2012) 074502 [arXiv:1205.0180 [hep-lat]].

[6] J. R. Green, M. Engelhardt, et al., arXiv:1209.1687 [hep-lat].

[7] L. Maiani, G. Martinelli, et al., Nucl. Phys. B 293, 420 (1987).

[8] A. A. Khan, M. Göckeler, et al., Phys. Rev. D 74 (2006) 094508 [hep-lat/0603028].

3


