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1. Introduction

The process of the inclusiveτ lepton decay into hadrons constitutes a unique opportunity to
explore the nonperturbative nature of the strong interaction at low energies. The experimental data
on hadronicτ decay are commonly employed in various tests of Quantum Chromodynamics (QCD)
and entire Standard Model, that puts strong limits on possible New Physics beyond the latter.

The pertinent experimentally measurable quantity is the ratio of the total width ofτ lepton
decay into hadrons to the width of its leptonic decay. Usually, this ratio is decomposed into several
parts, specifically

Rτ =
Γ(τ− → hadrons− ντ)

Γ(τ− → e− ν̄eντ)
= RJ=0

τ,V +RJ=1
τ,V +RJ=0

τ,A +RJ=1
τ,A +Rτ,S. (1.1)

In the right hand side of this equation the last term accounts for theτ lepton decay modes which in-
volve strange quark, whereas the other terms account for the hadronicdecay modes involving light
quarks (u, d) only and associated with vector (V) and axial–vector (A) quark currents, respectively.
The superscriptJ indicates the angular momentum in the hadronic rest frame.

The quantities appearing in Eq. (1.1) can be evaluated by making use of the so–called spectral
functions, which are extracted from the experiment. For the zero angularmomentum (J = 0) the
vector spectral function vanishes (that leads toRJ=0

τ,V = 0), whereas the axial–vector one is commonly
approximated by Diracδ–function, since the dominant contribution is due to the pion pole here.
The experimental predictions [1, 2] for the nonstrange spectral functions corresponding toJ = 1
are presented in Fig. 1. In what follows we shall restrict ourselves to theconsideration of termsRJ=1

τ,V

andRJ=1
τ,A of Rτ–ratio (1.1).

The aforementioned quantities can be represented in the following form

RJ=1
τ,V/A =

Nc

2
|Vud|

2SEW

(

∆V/A
QCD +δ ′

EW

)

, (1.2)

whereNc = 3 is the number of colors,|Vud|= 0.97425±0.00022 is Cabibbo–Kobayashi–Maskawa
matrix element [3],SEW = 1.0194±0.0050 andδ ′

EW = 0.0010 stand for the electroweak corrections
(see Refs. [4, 5]), and

∆V/A
QCD = 2

∫ M2
l

m2
V/A

(

1−
s

M2
l

)2(

1+2
s

M2
l

)

RV/A(s)
ds

M2
l

(1.3)

denotes the QCD contribution to Eq. (1.2). In the integrand of Eq. (1.3)

R(s) =
1

2π i
lim

ε→0+

[

Π(s+ iε)−Π(s− iε)
]

, (1.4)

whereΠ(q2) is the hadronic vacuum polarization function

Πµν(q2) = i
∫

d4x eiqx〈0|T
{

Jµ(x)Jν(0)
}

|0〉 =
i

12π2(qµqν −gµνq2)Π(q2) (1.5)

with Jµ(x) being the electromagnetic quark current (the indices “V” and “A” will only be shown
when relevant hereinafter). It is worthwhile to mention that for practical purposes it is also conve-
nient to deal with the so–called Adler function [6]

D(Q2) = −
dΠ(−Q2)

d lnQ2 , Q2 = −q2 = −s. (1.6)
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Figure 1: The inclusiveτ lepton hadronic decay vector (left plot) and axial–vector (right plot) spectral func-
tions [1, 2]. Vertical solid lines mark the boundaries of respective kinematic intervals, whereas horizontal
dashed lines denote the naive massless parton model predictions.

It is necessary to outline that in Eq. (1.3)Ml denotes the mass of the lepton on hand, whereas
mstands for the hadronic threshold mass (i.e., the total mass of the lightest allowed hadronic decay
mode of this lepton in the corresponding channel). The nonvanishing valueof m explicitly ex-
presses the physical fact thatτ lepton is the only lepton which is heavy enough (Mτ ≃1.777GeV[3])
to decay into hadrons. Indeed, in the massless limit (m = 0) the theoretical prediction for the
QCD contribution (1.3) to Eq. (1.2) is nonvanishing for either lepton (l = e,µ,τ). Specifically, the
leading–order term of Eq. (2.3)∆(0)

pert = 1 (which corresponds to the naive massless parton model

prediction for the Adler function (2.2)D(0)
pert(Q

2) = 1) does not depend onMl , and, therefore, is
the same for either lepton. In the realistic case (i.e., when the total mass of the lightest allowed
hadronic decay mode exceeds the masses of electron and muon,Me < Mµ < m < Mτ ) Eq. (1.3)
acquires non–zero value for the case of theτ lepton only.

2. Inclusive τ lepton hadronic decay within perturbative approach

In this Section we shall deal with the massless limit, that implies that the masses of all final
state particles are neglected (m= 0). By making use of definitions (1.4) and (1.6), integrating by
parts, and additionally employing Cauchy theorem, the quantity∆QCD (1.3) can be represented as

∆QCD =
1

2π

∫ π

−π
D

(

M2
τ eiθ )(

1+2eiθ −2ei3θ −ei4θ )

dθ , (2.1)

see, e.g., Refs. [7, 4]. It is worth noting here that Eq. (2.1) is only valid for the massless limit of
“genuine physical” Adler functionDphys(Q

2), which possesses the correct analytic properties in
the kinematic variableQ2 (otherwise Eq. (2.1) can not be derived from Eq. (1.3)). However,in
Eq. (2.1) one usually directly employs the perturbative approximation for theAdler function

D(Q2) ≃ D(ℓ)
pert(Q

2) = 1+∑ℓ

j=1d j

[

α(ℓ)
pert(Q

2)
] j

, Q2 → ∞, (2.2)

which has unphysical singularities inQ2. In this equation at the one–loop level (i.e., forℓ = 1) the
strong running coupling readsα(1)

pert(Q
2) = 4π/[β0 ln(Q2/Λ2)], whereβ0 = 11−2nf/3, Λ denotes
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Figure 2: Juxtaposition of the one–loop perturbative expression∆pert (2.3) (solid curve) with relevant exper-

imental data (2.4) (horizontal shaded bands). The leading–order term∆(0)
pert = 1 (2.3) is denoted by dashed

line. The solution for QCD scale parameterΛ (if exists) is shown by vertical dashed band.

the QCD scale parameter,nf is the number of active flavors, andd1 = 1/π, see Ref. [8] for the
details. In what follows the one–loop level withnf = 3 active flavors will be assumed. Eventually,
Eq. (2.1) corresponding to the perturbative Adler function (2.2) takes the form

∆pert = ∆(0)
pert+

4
β0

∫ π

0

λA1(θ)+θA2(θ)

π(λ 2 +θ 2)
dθ , (2.3)

where∆(0)
pert=1, A1(θ)=1+2cos(θ)−2cos(3θ)−cos(4θ), A2(θ)=2sin(θ)−2sin(3θ)−sin(4θ),

andλ = ln
(

M2
τ /Λ2

)

.
It is worthwhile to underscore that perturbative approach provides identical expressions (2.3)

for the functions (1.3) in vector and axial–vector channels (i.e.,∆V
pert≡ ∆A

pert). However, their ex-
perimental values [1, 2] are different, namely

∆V
exp = 1.224±0.050, ∆A

exp = 0.748±0.034. (2.4)

The comparison of these quantities with perturbative result (2.3) is presented in Fig. 2. As one
can infer from this figure, for vector channel there are two solutions for the QCD scale parameter:
Λ =

(

434+117
−127

)

MeV (which is usually retained) andΛ =
(

1652+21
−23

)

MeV (which is commonly
merely disregarded). As for the axial–vector channel, the perturbativeapproach fails to describe
the experimental data [1, 2], since for any value ofΛ the function∆pert (2.3) exceeds∆A

exp (2.4).

3. Dispersive approach to Quantum Chromodynamics

It is crucial to emphasize that the presented in Section 2 massless limit completely leaves out
the effects due to hadronization, which play significant role in the studies ofthe strong interaction
processes at low energies. Specifically, the mathematical realization of the physical fact, that in a
strong interaction process no final state hadrons can be produced at energies below the hadronic
threshold massm, consists in the fact that the beginning of cut of corresponding hadronicvacuum
polarization functionΠ(q2) (1.5) in the complexq2–plane is located at the threshold of hadronic
productionq2 = m2, but not atq2 = 0 (see also discussion of this issue in Ref. [9]). Such restric-
tions are inherently embodied within relevant dispersion relations, which, in turn, impose stringent
physical intrinsically nonperturbative constraints on the quantities on hand.
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The complete set of dispersion relations, which express the functions (1.4), (1.5), and (1.6) in
terms of each other, reads

∆Π(q2, q2
0) = (q2−q2

0)
∫ ∞

m2

R(σ)

(σ −q2)(σ −q2
0)

dσ = −
∫ −q2

−q2
0

D(ζ )
dζ
ζ

, (3.1)

D(Q2) = −
dΠ(−Q2)

d lnQ2 = Q2
∫ ∞

m2

R(σ)

(σ +Q2)2 dσ , (3.2)

R(s) =
1

2π i
lim

ε→0+

[

Π(s+ iε)−Π(s− iε)
]

=
1

2π i
lim

ε→0+

∫ s−iε

s+iε
D(−ζ )

dζ
ζ

, (3.3)

where∆Π(q2, q2
0) = Π(q2)−Π(q2

0) ands= q2 =−Q2 (see Refs. [6, 10]). For practical purposes, it
proves to be convenient to deal with the integral representations, which express the aforementioned
functions in terms of the common spectral densityρ(σ). Such representations have been derived
in the framework of Dispersive approach to QCD (see Refs. [11, 12] for the details):

∆Π(ℓ)(q2, q2
0) = ∆Π(0)(q2, q2

0)+
∫ ∞

m2
ρ(ℓ)(σ) ln

(

σ −q2

σ −q2
0

m2−q2
0

m2−q2

)

dσ
σ

, (3.4)

D(ℓ)(Q2) = D(0)(Q2)+
Q2

Q2 +m2

∫ ∞

m2
ρ(ℓ)(σ)

σ −m2

σ +Q2

dσ
σ

, (3.5)

R(ℓ)(s) = R(0)(s)+θ(s−m2)
∫ ∞

s
ρ(ℓ)(σ)

dσ
σ

. (3.6)

In these equationsθ(x) denotes the unit step–function (θ(x) = 1 if x≥ 0 andθ(x) = 0 otherwise)
andρ(ℓ)(σ) is theℓ–loop spectral density:

ρ(ℓ)(σ) =
1
π

d
d lnσ

Im lim
ε→0+

p(ℓ)(σ − iε) =
1
π

Im lim
ε→0+

d(ℓ)(−σ − iε) = −
d

d lnσ
r(ℓ)(σ), (3.7)

with p(ℓ)(q2), d(ℓ)(Q2), andr(ℓ)(s) being theℓ–loop strong corrections to functions (1.5), (1.6),
and (1.4), respectively (see Refs. [11, 12] for the details).

It is worthwhile to note that integral representations (3.4)–(3.6) automaticallyembody all the
nonperturbative constraints (including the correct analytic properties inthe kinematic variable) that
Eqs. (3.1)–(3.3) impose on the functions on hand. For example, dispersion relation (3.2) implies
that the Adler function vanishes in the infrared limit (D(Q2)→ 0 atQ2 → 0) and possesses the only
cut along the negative semiaxis of realQ2 starting at the hadronic production thresholdQ2 ≤−m2

(preliminary formulation of the Dispersive approach to QCD, which accounts for the second con-
straint only, was discussed in Ref. [13]).

It is worth mentioning also that integral representations (3.4)–(3.6) were obtained by making
use of only the dispersion relations (3.1)–(3.3) and the fact that the strong correctiond(Q2) vanishes
in the ultraviolet asymptoticQ2 → ∞. Neither additional approximations nor model–dependent
assumptions were involved in the derivation of Eqs. (3.4)–(3.6), see Refs. [11, 12] for the details.
It is worthwhile to note that the hadronic vacuum polarization function (3.4) agrees with relevant
lattice simulation data (e.g., Ref. [14]) and the Adler function (3.5) agrees withcorresponding
experimental prediction, see Refs. [11, 12] (as well as Ref. [15]) for the details.

In general, there is no unique way to calculate the spectral density (3.7) (see Refs. [16, 17]).
Nonetheless, the perturbative contribution to Eq. (3.7) can be obtained bymaking use of perturba-
tive expressions for the strong correctionsp(ℓ)

pert(q
2), d(ℓ)

pert(Q
2), andr(ℓ)

pert(s) (see, e.g., paper [18] and

5
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references therein):

ρ(ℓ)
pert(σ) =

1
π

d
d lnσ

Im lim
ε→0+

p(ℓ)
pert(σ − iε) =

1
π

Im lim
ε→0+

d(ℓ)
pert(−σ − iε) = −

d
d lnσ

r(ℓ)
pert(σ). (3.8)

Note that in the massless limit (m= 0) the integral representations (3.4)–(3.6) acquire the form

∆Π(ℓ)(q2, q2
0) = − ln

(

−q2

−q2
0

)

+
∫ ∞

0
ρ(ℓ)(σ) ln

[

1− (σ/q2)

1− (σ/q2
0)

]

dσ
σ

, (3.9)

D(ℓ)(Q2) = 1+
∫ ∞

0

ρ(ℓ)(σ)

σ +Q2 dσ , R(ℓ)(s) = θ(s)

[

1+
∫ ∞

s
ρ(ℓ)(σ)

dσ
σ

]

. (3.10)

In particular, Eq. (3.9) expresses the fact that in the massless limit the hadronic vacuum polariza-
tion functionΠ(q2) (1.5) can not be subtracted at the pointq2

0 = 0. It is worth mentioning also

that for the case of perturbative spectral density (ρ(ℓ)(σ) = Im d(ℓ)
pert(−σ − i 0+)/π) the massless

equations (3.10) become identical to those of the so–called Analytic Perturbation Theory [19] (see
also Refs. [20, 21]). But, as it was emphasized above, it is essential to keep the hadronic threshold
massmnonvanishing (see also discussion of this issue in Refs. [9, 11, 12]).

In the realistic case (m 6= 0) the so–called “Abrupt kinematic threshold” may be employed for
the leading–order terms of the functions (1.4)–(1.6):

∆Π(0)(q2, q2
0) = − ln

(

m2−q2

m2−q2
0

)

, D(0)(Q2) =
Q2

Q2 +m2 , R(0)(s) = θ(s−m2). (3.11)

This equation represents a rather rough approximation, which, nonetheless, grasps the basic pecu-
liarities of the functions on hand. The expression (3.11) was examined in details in Refs. [11, 12,
22] and has been applied to the study of the inclusiveτ lepton hadronic decay in Refs. [12, 22].
The latter has revealed the significance of the effects due to hadronization. For example, in
the vector channel the leading–order QCD contribution (1.3) corresponding to Eq. (3.11) reads
∆(0)

QCD = 1+δ V
had, whereδ V

had≃−0.048, that considerably exceeds the electroweak correctionδ ′
EW to

Eq. (1.2), see Refs. [12, 22] for the details.
More accurate expression for the leading–order terms of the functions (1.4)–(1.6) is the so–

called “Smooth kinematic threshold” (e.g., Refs. [9, 23]):

∆Π(0)(q2, 0) =
2
3

+2

(

1−
m2

q2

)(

1−
ϕ

tanϕ

)

, sin2 ϕ =
q2

m2 , (3.12)

D(0)(Q2) = 1+
3
ξ

{

1+
u(ξ )

2
ln

[

1+2ξ
(

1−u(ξ )
)]

}

, u(ξ )=
√

1+ξ−1, ξ =
Q2

m2 , (3.13)

R(0)(s) = θ(s−m2)

(

1−
m2

s

)3/2

, (3.14)

see also papers [22, 24] and references therein. Here the effects due to hadronization appear to be
even more pronounced than in the aforementioned case, see Refs. [22,24, 25] for the details.

4. Inclusive τ lepton hadronic decay within Dispersive approach

Let us proceed now to the description of inclusiveτ lepton hadronic decay within Dispersive
approach [11, 12]. This analysis retains the effects due to hadronization (in other words, the expres-

6
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Figure 3: Juxtaposition of expression∆V/A
QCD (4.1) (solid curves) with relevant experimental data (2.4)(hori-

zontal shaded bands). The solutions for QCD scale parameterΛ are shown by vertical dashed bands.

sions (3.4)–(3.6) are used instead of their perturbative approximations and the hadronic threshold
massm is kept nonvanishing). The leading–order terms (3.12)–(3.14) are alsoemployed.

Eventually, within the approach on hand the quantity∆V/A
QCD (1.3) acquires the following form

(see Refs. [22, 24, 25] for the details):

∆V/A
QCD =

√

1−ζV/A

(

1+6ζV/A −
5
8

ζ 2
V/A +

3
16

ζ 3
V/A

)

−3ζV/A

(

1+
1
8

ζ 2
V/A −

1
32

ζ 3
V/A

)

ln

[

2
ζV/A

(

1+
√

1−ζV/A

)

−1

]

+
∫ ∞

m2
V/A

H
( σ

M2
τ

)

ρ(σ)
dσ
σ

, (4.1)

whereH(x) = g(x)θ(1− x)+ g(1)θ(x−1)−g(ζV/A), g(x) = x(2−2x2 + x3), m2
V ≃ 0.075GeV2,

m2
A ≃ 0.288GeV2, andζV/A = m2

V/A/M2
τ . For the spectral densityρ(σ) the model [22, 24]

ρ(σ) =
4
β0

1

ln2(σ/Λ2)+π2
+

Λ2

σ
(4.2)

(see also papers [16, 17] and references therein) is used in this analysis. The first term in the right–
hand side of Eq. (4.2) is the one–loop perturbative contribution, whereas the second term represents
intrinsically nonperturbative part of the spectral density.

The comparison of obtained result (4.1) with experimental data (2.4) givesnearly identical
solutions for the QCD scale parameterΛ in both channels, see Fig. 3. Namely,Λ = (408±30)MeV
for vector channel andΛ = (418±35)MeV for axial–vector one. Additionally, both these values
agree with the aforementioned perturbative solution for vector channel. It is worth mentioning also
that the use of OPAL data onτ lepton hadronic decay [26] yields quite similar results [25].

5. Conclusions

The theoretical description of inclusiveτ lepton hadronic decay is performed in the framework
of Dispersive approach to QCD. The significance of effects due to hadronization is convincingly
demonstrated. The approach on hand proves to be capable of describing experimental data on
τ lepton hadronic decay in vector and axial–vector channels. The vicinity ofvalues of QCD scale
parameter obtained in both channels bears witness to the self–consistency of developed approach.

The author is grateful to D.Boito, P.Colangelo, M.Davier, F.DeFazio, A.Francis, and S.Menke for
the stimulating discussions and useful comments.This work is supported by grant JINR-12-301-01.
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