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In the framework of nonlocal SU(2) chiral quark models with Polyakov loop, we analyze the

dependence of the deconfinement and chiral restoration critical temperatures on the explicit chi-

ral symmetry breaking driven by the current quark mass. Our results are compared with those

obtained within the standard local Polyakov-Nambu-Jona-Lasinio (PNJL) model and with lattice

QCD calculations. For a wide range of pion masses, it is foundthat both deconfinement and

chiral restoration critical temperatures turn out to be strongly entangled, in contrast with the cor-

responding results within the PNJL model. In addition, it isseen that the growth of the critical

temperatures with the pion mass above the physical point is basically linear, with a slope parame-

ter which is close to the existing lattice QCD estimates. On the other hand, at the mean field level

one finds an early onset of the first order transition expectedin the large quark mass limit.
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1. Formalism

Our starting point is the SU(2) quark model described in Ref.[1], a nonlocal extension of the
NJL model that includes wave function renormalization (WFR) of the quark fields, and in which
quarks are coupled to a background color field. We work in the mean field approximation (MFA),
and use the Matsubara formalism to consider finite temperature. Within this framework the MFA
thermodynamical potential reads

ΩMFA =−4T ∑
c,n

∫

d3~p
(2π)3 ln

[

(ρc
n,~p)

2+M2(ρc
n,~p)

Z2(ρc
n,~p)

]

+
σ̄2

1 +κ2
p σ̄2

2

2GS
+U (Φ,Φ∗,T) . (1.1)

HereM(p) = Z(p) [mc+ σ̄1 g(p)] andZ(p) = [1− σ̄2 f (p)]−1, whereg(p) and f (p) are nonlocal
form factors, and̄σ1 andσ̄2 are the mean field values of scalar fields introduced after a bosonization
of the fermionic theory. We have also defined(ρc

n,~p)
2 = [(2n+1)πT +φc]

2 +~p 2 , with φr,g =

±φ3+φ8/
√

3, φb =−2φ8/
√

3, whereφ3 andφ8 parameterize the traced PL according to
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T

)
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)

cos(φ3/T)
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. (1.2)

Regarding the PL effective potentialU (Φ,Φ∗,T)we consider two alternative functional forms:
A polynomiar one based on a Ginzburg-Landau ansatz; and a logarithmic expression of the Haar
measure associated with the SU(3) color group integration [2].

In addition, we use the same prescription as e.g. in Ref. [3] to regularizeΩMFA .
The mean field values̄σ1,2 andφ3,8 can be obtained from a set of four coupled “gap” equations

that follow from the minimization of the real part of the regularized thermodynamical potential,

∂Re
[

ΩMFA
reg

]

∂ (σ̄1, σ̄2,φ3,φ8)
= 0 . (1.3)

Once the mean field values are obtained, the behavior of otherrelevant quantities as functions
of T can be determined. We concentrate in particular in the chiral quark condensate〈q̄q〉 =
∂ΩMFA

reg /∂mc, which together with the modulus of the Polyakov loop|Φ| will be taken as order
parameters of the chiral restoration and deconfinement transitions, respectively. The associated
susceptibilities will be defined asχcond= d〈q̄q〉/dT andχPL = d|Φ|/dT.

In order to fully specify the model under consideration we have to fix the model parameters,
GS, κp andmc, as well as the form factorsg(q) and f (q) that characterize the nonlocal interactions.
Here we consider the parameter sets 1 and 2, which correspondto sets B and C from Ref. [4].

2. Results

We want to study the dependence of nlPNJL model predictions on the amount of explicit chiral
symmetry breaking. This can be addressed by varying the current quark massmc, while keeping
the rest of the model parameters fixed at their values at the physical point. As a first step we
analyze the corresponding behavior of the pion mass and decay constant at vanishing temperature,
in comparison with that obtained in the local NJL model and inlattice QCD (Fig. 1). While lattice
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Figure 1: m2
π/mc (left) and fπ (right) atT = 0 in local and nonlocal models. Lattice results from Ref. [5].
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Figure 2: Order parameters (top) and susceptibilities (bottom) as functions ofT for some values of the pion
mass (Set 2). Left (right) panels correspond to the polynomic (logarithmic) Polyakov potential.

results for the ratiom2
π/mc are in agreement with both local and nonlocal models, those for fπ show

a significant increase withmπ that can be reproduced only by the predictions of nonlocal models.

We turn to analyze the mass dependence of the critical temperatures atµ = 0. We have found
that, contrary to the case of the local PNJL model, in nlPNJL models bothTc turn out to be strongly
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Figure 3: Critical temperatures as functions ofmπ for PNJL and nlPNJL models, considering polynomic
(left) and logarithmic (right) PL potentials. Dashed (dotted) lines correspond to chiral restoration (decon-
finement)Tc. For the nlPNJL models with a logarithmic potential, both transitions occur at the sameT, and
they can be of first order (solid lines) or proceed as a smooth crossover (dashed-dotted lines).

entangled for the considered range ofmπ (Fig. 2). In addition, the growth ofTc with mπ above
the physical point is basically linear (Fig. 3), with a slopeparameter in the range of 0.06−0.07,
which is close to existing lattice QCD estimates,∼ 0.05 [6]. This can be contrasted with the results
obtained within pure chiral models, where one finds a strong increase of the chiral restoration
temperature withmπ [7, 8]. For example, within the model of Ref.[8] one gets a value of 0.243.

3. Conclusions

We found that nlPNJL predictions as functions of the amount of chiral symmetry breaking
show good agreement with LQCD results for pion properties atT = 0 as well as for the growth
of Tc with mπ . On the other hand, particularly in the case of the logarithmic PL potential, this
calculation leads to a too early onset of the first order transition known to exist in the large quark
mass limit. We expect that the development of a fully nonperturbative scheme to account for meson
fluctuations in nonlocal models might help to solve this problem.
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