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1. Introduction

Since 1995, the CEBAF facility at Jefferson Laboratory has operated high-duty factor (con-
tinuous) beams of electrons incident on three experimental halls (denoted A, B, and C), each with
a unique set of experimental equipment. As a result of advances in the performance of supercon-
ducting radiofrequency (SRF) accelerator technology, the electron beam has exceeded the original
4 GeV energy specification, and beams with energies up to 6 GeV with currents up to 180 uA
have been delivered for the experimental program. In addition, the development of advanced GaAs
photoemission sources has enabled high quality polarized beam with polarizations up to 85%. The
facility serves an international scientific user community of over 1300 scientists, and to date over
160 experiments have been completed.

The first decade of scientific results from Jefferson Lab has recently been summarized in an
extensive review [[I]. Major achievements include the demonstration of isoscalar meson-exchange
effects in the tensor analyzing power in electron-deuteron scattering, the discovery of the unex-
pected behavior of the ratio of proton electromagnetic form factors Gg /Gy, at high momentum
transfers, the precise measurements of parity-violating asymmetries that constrain the strangeness
content of the form factors to be remarkably small, and pioneering measurements of Generalized
Parton Distributions (GPD) in Deeply Virtual Compton Scattering (DVCS) and Transverse Mo-
mentum Dependent (TMD) distributions (in Semi-inclusive Deep Inelastic Scattering, or SIDIS).
This remarkable record of scientific productivity, and the prospects for further scientific advances
in this field, have motivated a major upgrade of CEBAF to 12 GeV electron beam energy along
with substantial new experimental equipment.

2. 12 GeV Upgrade

Early in the history of CEBAF, plans were developed to upgrade the capability of the accel-
erator to enable beams up to 12 GeV in energy. The US nuclear physics community subsequently
endorsed this concept, and the 2002 Long Range Plan of the US Nuclear Science Advisory Com-
mittee (NSAC) [[] contained a recommendation: “We strongly recommend the construction of
CEBAF at Jefferson Laboratory to 12 GeV as quickly as possible”. In March 2004 the US Depart-
ment of Energy (DOE) granted CD-0 approval to develop a conceptual design for such a facility.
Following further development of the design of the upgraded facility, the 2007 NSAC Long Range
Plan [B] reaffirmed the community commitment to this project: “We recommend completion of
the 12 GeV Upgrade at Jefferson Lab. The Upgrade will enable new insights into the structure of
the nucleon, the transition between the hadronic and quark/gluon descriptions of nuclei, and the
nature of confinement.” The Jefferson Lab user community and the Laboratory staff completed the
design, including detailed cost and schedule, in 2008. DOE then approved the start of construction
in September 2008.

CEBAF is currently a recirculating linac, with 2 linac sections, each consisting of 20 cryomod-
ules. A cryomodule contains 8 superconducting RF cavities and is capable of an average 25 MeV
of acceleration. Thus each linac section is nominally capable of producing 0.5 GeV of energy gain.
The recirculating arcs contain quadrupole and dipole magnets in separate beamlines that facilitate
beam acceleration up to 5 times through both linacs, producing a nominal energy of 5 GeV with
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Figure 1: Jefferson Lab 12 GeV upgrade concept.

actual performance up to 6 GeV. Individual beam pulses can be "kicked" into an extraction line
after the second (South) linac section and delivered into one of the 3 experimental halls. Thus
the beam can be split into three simultaneous 499 MHz beams with energies in multiples of % of
the full 5-pass energy. The high duty factor associated with the 2 ns beam structure enables high
luminosity experiments with coincident detection of multiple particles per event.

Fig. @ illustrates the basic concept of the 12 GeV upgrade project. In addition to the upgrade
of the accelerator system to enable delivery of 12 GeV beam, the experimental equipment will be
enhanced to facilitate full exploitation of the higher energy beam. This includes substantial new
equipment in Hall B and Hall C, and a completely new Hall D with a new detector and spectrometer
system. The plan for Hall A also includes upgraded and new equipment that is outside the present
construction project.

3. 12 GeV Science Program

The physics program to be addressed with the Jefferson Lab 12 GeV upgrade has been de-
veloped in collaboration with the user community and with the guidance of the Program Advisory
Committee. There are presently 52 approved experiments, and 15 additional proposals have condi-
tional approval.

The major science questions to be addressed with the upgraded facility include:

e What is the role of gluonic excitations in the spectroscopy of light mesons? Can these exci-
tations elucidate the origin of quark confinement?

o Where is the missing spin in the nucleon? Is there a significant contribution from valence
quark orbital angular momentum?
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Figure 2: Lattice QCD predictions for exotic isovector mesons [B].

e Can we reveal a novel landscape of nucleon substructure through measurements of new mul-
tidimensional distribution functions?

e What is the relation between short-range N-N correlations, the partonic structure of nuclei,
and the origin of the nuclear force?

e Can we discover evidence for physics beyond the standard model of particle physics?

A detailed exposition of the science opportunities at the upgraded facility has recently been
published [H]. Here we briefly present some highlights.

4. Meson Spectroscopy

Excitation of the gluonic field in a quark-antiquark system can lead to mesonic states with
exotic quantum numbers (J7€ = 07—, 17+ 2% 7) that cannot be described by states with only quark-
antiquark degrees of freedom. These states and their properties have recently been studied in
detail using lattice QCD methods [B, B]. As shown in Fig. D, chiral extrapolation of these lattice
calculations indicate that the exotic mesons will indeed be present in the mass range 2-2.5 GeV.

A major new experiment, known as GlueX (see Fig. B), will be constructed and sited in Hall D.
The main goal of the GlueX experiment is to search for exotic mesons produced via photoproduc-
tion on the nucleon. Linearly polarized photons will be produced upstream of Hall D by a coherent
bremmestrahlung process using a thin (~ 20 micron) diamond wafer. The scattered electrons from
8.5-9 GeV bremmstrahlung photons will be tagged with scintillator detectors following a bending
magnet, yielding a tagged photon resolution of 0.2% with fluxes expected to reach 10%/s.

5. Nucleon Structure

Since the initial discovery at SLAC in the 1960’s, the partonic structure of the nucleon has
been described by the one-dimensional parton distribution functions (PDF). The four parity con-
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Figure 3: Schematic of GlueX apparatus.

serving structure functions of the variable x (f1, f2, g1, and g»), have been studied in great detail in
many experiments over the last four decades. However, over the last 15 years it has been realized
that these one dimensional distributions are not adequate to describe the nucleon and do not contain
some essential physics needed to provide a complete picture. The orbital angular momentum of
partons is a good example of a degree of freedom that is not exhibited in the standard 1-d PDFs. Re-
cent experimental and theoretical studies indicate that a more complete description of the partonic
structure of the nucleon is realizable through new multi-dimensional distributions: Generalized
Parton Distributions (GPD) and Transverse Momentum Dependent (TMD) distributions.

GPDs contain information on the correlation between the quark/gluon transverse position in
the nucleon and its longitudinal momentum They can be accessed in exclusive scattering pro-
cesses at large Q°: deeply virtual Compton scattering (DVCS) and deep virtual meson production
(DVMP). GPDs offer a path to a full 3-dimensional exploration of nucleon structure, in transverse
position and longitudinal momentum space, enabling spatial tomography of the nucleon. The new
CLASI12 apparatus being constructed for Hall B as part of the 12 GeV upgrade is specifically
designed to study these processes.

Transverse momentum dependent distributions (TMDs) contain information on the quark/gluon
intrinsic motion in a nucleon, and on the correlations between the transverse momentum of the
quark and the quark/nucleon spins. TMDs offer a unique opportunity for a momentum tomography
of the nucleon, and can be measured in Semi-Inclusive Deep Inelastic Scattering (SIDIS), in which
the nucleon is no longer intact and one of the outgoing hadrons is detected. SIDIS will be studied
in Hall C with high resolution spectrometers, in Hall B with CLAS12, and in Hall A with the new
Super Bigbite Spectrometer (SBS). A major new capability for SIDIS is proposed in the Solenoidal
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Figure 4: Kinematic reach of the 12 GeV upgrade at Jefferson Lab in Q7 and x space, in relation to other
previous facilities and experiments [A]. The higher energy, combined with the higher luminosity available at
JLab, offers new opportunities to explore nucleon structure in the valence quark regime.

Large Intensity Device (SoLID) to be sited in Hall A. This project is still under development, but
would offer exceptional capability for mapping out the TMDs with the 12 GeV beam at JLab.

As shown in Fig. B, the upgraded facility at Jefferson Lab will significantly extend the kine-
matic reach for deep-inelastic studies of the nucleon in the valence region. This new coverage will
enable a complete exploration of SIDIS and also inclusive scattering to provide a more complete
picture of the nucleon in the valence region.

6. Quarks in Nuclei

The Jefferson Lab 12 GeV Upgrade will both study the QCD structure of nuclei and use the
nucleus as a laboratory to study QCD. The new facility will enable investigations of a number of
the most fundamental questions in modern nuclear physics.

The nature of the nucleon-nucleon (NN) relative wave function at short distances is fundamen-
tal to the origin of the nuclear force and to the properties of nuclei. It is not known if this system can
be described only in terms of nucleons and mesons, or whether quarks and gluons are necessary for
its description. Recent studies indicate that modification of the nuclear parton distributions, or the
"EMC effect", is related to short-range NN correlations in nuclei [@]. Further experimental studies
to explore these important issues will be possible with the 12 GeV CEBAF and new experimental
equipment.

QCD also suggests the existence of novel phenomena in nuclear physics. The nuclear medium
provides mechanisms for filtering quantum states and studying their spacetime evolution. Studying
the hadronization of a struck quark in different nuclei affords a unique method for elucidating this
process. The formation of small color singlet configurations leads to the novel process known as
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color transparency. The increased kinematic range of the 12 GeV CEBAF will offer new opportu-
nities to study these and other related topics.

A recent Jefferson Lab experiment, PREX, has demonstrated a new method to determine the
neutron radius of a heavy nucleus like 2*Pb [B]. The precise measurements of the charge distri-
bution of nuclei in elastic electron scattering provide stringent constraints on the distribution of
protons in nuclei. However, the distribution of neutrons is more difficult to study and is also quite
important for predicting the properties of neutron stars. The weak charge of the neutron is -1,
whereas the weak charge of the proton is 1 —4sin” @y < 1. Thus, the measurement of parity vio-
lating asymmetries in elastic electron scattering from nuclei is sensitive to the neutron distribution
and can be used to constrain the neutron radius. Future studies with higher precision are planned
for the Jefferson Lab 12 GeV program.

7. Beyond the Standard Model

Exciting new opportunities to search for new physics beyond the Standard Model will become
possible at Jefferson Lab in the 12 GeV era. The very precise measurements of parity violating
asymmetries to study the strange form factors in elastic electron-proton scattering have demon-
strated that this technique has substantial potential for precision tests of the Standard Model. The
strength of the neutral weak interaction is parameterized in the standard model by the weak mixing
angle By . This parameter is very precisely determined at the Z boson mass by e™-e™~ collider exper-
iments. The two best measurements (which differ by more than 20°) have uncertainties of 0.00029
and 0.00026, and can be combined to yield the average value sin’ 6w = 0.23116 £0.00013 [I2].
Radiative corrections associated with standard model physics predicts a “running” of this coupling
to sin® By = 0.2388 at Q> = 0. Additional particles at high mass (larger than M) would generally
modify these radiative corrections, leading to a different value of sin” @y at Q% = 0. Thus precise
measurements of the neutral weak interaction at low Q% < M% can reveal the presence of particles
and forces not present in the standard model.

A major new experiment to study parity-violation in elastic electron-proton scattering at low
Q? was recently completed in Hall C at Jefferson Lab[H]. The data from this experiment, known
as Oyeak, are under analysis. In addition, there are presently 2 new proposals to perform parity
violation measurements at the upgraded CEBAF. One would use the proposed solenoidal mag-
netic spectrometer system (SOLID) to study parity-violating deep inelastic scattering [[]. The
other proposal involves the construction of a novel dedicated toroidal spectrometer to study parity-
violating Mgller scattering [[[T]. Both experiments will require construction of substantial new
experimental equipment (beyond the scope of the present upgrade project) and are proposed to be
sited in experimental Hall A.

Fig. B shows the standard model prediction (in the "minimal subtraction", or MS, renormal-
ization scheme) for sin” Oy as a function of energy scale 1. The value at the mass of the Z boson is
fit to the e™ — e~ data. Also shown are results from atomic parity violation, parity violating Mgller
scattering at SLAC (E158), and results from deep inelastic neutrino scattering. (It should be noted
that the nuclear corrections for the deep inelastic neutrino scattering results are still a subject of
substantial discussion.) The projected results for sin® @y for the future Jefferson Lab experiments
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Figure 5: The standard model prediction for sin® @y, along with previous measurements and expected
results for future experiments at Jefferson Lab [I2].

are shown at the correct energy scale, but arbitrary values of sin” @y, to illustrate the expected
experimental uncertainty.

Heavy photons, called A’s, are new hypothesized massive vector bosons that have a small
coupling to electrically charged matter, including electrons. The existence of an A’ is theoretically
natural and could explain the discrepancy between the measured and observed anomalous magnetic
moment of the muon [[3] and several intriguing dark matter-related anomalies. New electron fixed-
target experiments proposed at Jefferson Lab, with its high-quality and high-luminosity electron
beams, present a unique and powerful probe for A’s. These experiments include the A’ Experiment
(APEX)[I2], the Heavy Photon Search (HPS)[I®], and Detecting A Resonance Kinematically with
Electrons Incident on a Gaseous Hydrogen Target (Dark Light)[[J].

8. Electron Ion Collider

The 2007 NSAC Long Range Plan [B] identified an Electron Ion Collider as a new opportunity
for the field of nuclear physics: "An Electron-lon Collider (EIC) with polarized beams has been
embraced by the U.S. nuclear science community as embodying the vision for reaching the next
QCD frontier. EIC would provide unique capabilities for the study of QCD well beyond those
available at existing facilities worldwide and complementary to those planned for the next genera-
tion of accelerators in Europe and Asia." In 2010, a 10 week program at the Institute for Nuclear
Theory in Seattle explored the scientific case for such a collider [[4]. The community reached a
consensus on the basic scientific requirements for such a facility:
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e Highly polarized (~ 70%) electron and nucleon beams

e Jon beams from deuteron to the heaviest nuclei (Uranium or Lead)

e Variable center of mass energies from ~ 20— ~ 100 GeV, upgradable to ~ 150 GeV
e High collision luminosity ~ 103*~3*cm=2s~!

Subsequently, a white paper has been generated to coherently elucidate the physics that could be
addressed with an EIC [[3]. Such a facility would capitalize on the powerful new experimental
techniques for exploring nucleon structure that are being developed for the 12 GeV JLab program,
and apply them to the low x region where the dynamics is dominated by the gluons. It is widely
perceived that addressing this kinematic regime with high luminosity and fully polarized beams is
necessary to complete our understanding of the basic partonic structure of the nucleon. An EIC is
viewed as a natural extension of the capabilities of the Jefferson Lab 12 GeV upgrade, the RHIC
spin program, and the COMPASS experiment at CERN.

The Accelerator and Physics Divisions at Jefferson Lab have been working for several years
on a novel design for an EIC that would utilize the 12 GeV CEBAF as an injector to a collider
facility [[d]. As shown in Figure B, the storage rings would be in a "figure 8" layout to mitigate the
effects of depolarizing resonances and facilitate high beam polarization. A medium energy version,
MEIC, is envisioned that would collide 12 GeV electrons with 100 GeV protons. This could be
upgraded to the full EIC facility with 12 GeV electrons colliding with 250 GeV protons.

9. Conclusion

Jefferson Lab will continue its tradition of providing forefront nuclear physics capabilities with
intense polarized electron beams. The 12 GeV upgrade which is presently in progress will enable
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dramatic advances in the study of meson spectroscopy, nucleon structure, the short-distance struc-

ture of nuclei, and precision tests of the Standard Model. The program that is presently planned

will require at least 7-10 years to execute after the facility becomes operational in 2015. Further

in the future, it is envisioned that the Lab will evolve to an electron ion collider facility. Such a

facility would address a new QCD frontier that would enable new scientific opportunities well into
the future beyond the 12 GeV upgrade.
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