
P
o
S
(
C
D
1
2
)
0
0
6

Analyticity and unitarity constraints on form factors

Irinel Caprini∗†

Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125
Bucharest-Magurele, Romania
E-mail: caprini@theory.nipne.ro

After a brief historical review of the method of unitarity bounds for the hadronic form factors,

proposed by Okubo more than 40 years ago, I present the mathematical foundation of the formal-

ism known as the Meiman problem and its generalizations. It allows the optimal implementation

of the available information on the phase and modulus of the form factors on the unitarity cut, and

leads to upper and lower bounds on the values of the form factors and their derivatives at points

inside the holomorphy domain. The formalism is useful for checking the consistency of experi-

mental data and theoretical predictions, in particular from Chiral Perturbation Theory and lattice

calculations. It provides also means for controlling the truncation error in parametrizations of the

form factors of interest for precision predictions in flavour physics. Several recent applications

to the pion electromagnetic form factor and the form factorsrelevant for the semileptonic decays

D → π lν andB→ π lν are discussed.

The 7th International Workshop on Chiral Dynamics,
August 6 -10, 2012
Jefferson Lab, Newport News, Virginia, USA

∗Speaker.
†Talk based on works done in collaboration with G. Abbas, B. Ananthanarayan, C. Bourrely, D. Das, I. Sentitemsu

Imsong, L. Lellouch and S. Ramanan.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
C
D
1
2
)
0
0
6

Analyticity and unitarity constraints Irinel Caprini

1. Introduction

In this talk I will consider electromagnetic form factorsFP(t) of light pseudoscalar mesonsP
(in particularP = π), defined as

〈P+(p′)|Jelm
µ |P+(p)〉 = (p+ p′)µFP(t), (1.1)

and form factors relevant for the weak semileptonic transitions P1 → P2ℓν (whereP1 = B,D or K
andP2 = D or π), appearing in the matrix element

〈P+
2 (p′)|Jweak

µ |P0
1 (p)〉 = (p′ + p)µ f+(t)+ (p− p′)µ f−(t). (1.2)

Here f+(t) is the vector form factor andf0(t) = f+(t)+ t
M2

P1
−M2

P2

f−(t) is the so-called scalar form

factor. In the general discussion I shall denote a generic hadronic form factor byF(t).
At low energies the theoretical description of the hadronicform factors is based on Chiral

Perturbation Theory (ChPT), lattice QCD and various types of QCD Sum Rules, while perturbative
QCD is valid at high momentum transfers of spacelike type,t = −Q2 < 0, where it predicts in
general an asymptotic 1/Q2 scaling. At intermediate energies a consistent description does not
exist, the theoretical models proposed in the literature being affected by large uncertainties.

Analyticity and unitarity have been much exploited in phenomenological studies of form fac-
tors, especially in the early sixties, when enthusiasts of analytic S-matrix theory were quoted1 as
saying that "one of the most remarkable discoveries in elementary particle physics has been that
of the existence of the complex plane". The question is whether these properties are still useful
at present, when a successful theory of strong interactionsexists. The goal of this talk is to show
that, suitably exploited, analyticity and unitarity provide useful tools as a link between various
descriptions and for making precision predictions at low energies.

The analytic properties of form factors are in general much simpler than those of the scattering
amplitudes (complications like unphysical regions or anomalous thresholds are not encountered in
the cases considered). Causality implies that a generic form factorF(t) is a real analytic function,
F(t∗) = F∗(t), in the complext-plane with a cut along the real axis from the specific lowest unitarity
thresholdt+ to infinity. The discontinuity across the cut is given by unitarity, which in the elastic
region reads

ImF(t + iε) = θ(t − t+)σ(t)( f I
J(t))

∗ F(t), t < tin, (1.3)

whereσ(t) =
√

1− t+/t is the two particle phase space,f I
J(t) = (e2iδ I

J (t)−1)/(2iσ(t)) is the partial
wave amplitude with the same spinJ and isospinI quantum numbers, andtin is the first inelastic
threshold. This implies in particular Fermi-Watson theorem:

arg[F(t + iε)] = δ I
J(t), t+ ≤ t ≤ tin, (1.4)

whereδ J
I (t) is the phase-shift of the corresponding partial wave of elastic scattering.

The form factors are analytic att = 0, where they admit Taylor expansions convergent inside
the circle passing through the nearest singularities. These expansions are written usually as

F(t) = 1+
1
6
〈r2

π〉 t +ct2 +d t3 + · · · (1.5)

1J. Schwinger inParticles, Sources and Fields, vol. 1, page 36, Addison Wesley, 1970.
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for the pion electromagnetic form factor, where〈r2
π〉 denotes the charge radius squared, and

fk(t) = fk(0)

(

1+ λ ′
k

t
M2 +

1
2

λ ′′
k

t2

M4 + · · ·
)

, k = +,0, (1.6)

for the weak form factors, whereM is a suitable mass scale.
There are three known types of integral representations which exploit analyticity and allow

the analytic continuation of the form factors from the cut topoints inside the analyticity domain:
the standard dispersion relation, based on Cauchy integraland the reality property, written (modulo
subtractions) as

F(t) =
1
π

∫ ∞

t+

ImF(t ′ + iε)dt′

t ′− t
, (1.7)

the Omnès representation, which expresses the function in terms of its phase

F(t) = P(t)exp

(

t
π

∫ ∞

t+
dt′

δ (t ′)
t ′(t ′− t)

)

, δ (t) ≡ argF(t + iε), (1.8)

whereP(t) is an arbitrary polynomial accounting for the zeros ofF(t) at pointsti in the complex
plane,P(ti) = 0, and the representation in terms of the modulus

F(t) = B(t)exp

(√
t+− t
π

∫ ∞

t+

ln |F(t ′)|dt ′√
t ′− t+(t ′− t)

)

, (1.9)

whereB(t) is a so-called Blaschke factor, with the property|B(t)| = 1 for t > t+, which also
accounts for the possible zeros at pointsti , B(ti) = 0.

None of these standard representations has complete input:the imaginary part is not directly
measurable, the phaseδ (t) is sometimes known from Fermi-Watson theorem in the elasticregion,
but is unknown fort > tin, while the modulus|F(t)| is measured directly in some cases, but only on
a limited energy range. Moreover, both the phase and modulusrepresentations require the positions
of the zeros in the complex plane, which are not known. Various analytic parametrizations are also
often employed, but they have in general little predictive power outside their original range, due to
the phenomenon known as "instability of analytic continuation" [1].

In this context, it is remarkable that Okubo [2], back in the early 70’, devised an approach
which produced almost model-independent constraints on the Kℓ3 form factors in the physical re-
gion of K → πℓν decays. The method starts with a polarization tensor of a suitable operator,
calculated from current algebra at spacelike momenta, and exploits unitarity and positivity of the
spectral functions in the dispersion relations valid for the invariant amplitudes. These steps lead to
an upper bound on a weighted integral along the unitarity cutof the modulus squared of a related
form factor. From this condition, mathematical techniquesof complex analysis [3, 4] allow one to
derive bounds on the values of the form factor and its derivatives at points inside the analyticity
domain. Okubo approach, known also as "method of unitarity bounds", was further applied by
Micu [5], Auberson et al. [6], Singh and Raina [7] and other authors.

A modern version of the approach was put forward in 1981 by Bourrely, Machet and de Rafael
[8], who obtained the input spacelike correlators from perturbative QCD and Operator Product
Expansion (OPE) rather than from current algebra. Later on,de Rafael and Taron [9] made a first
application to the semileptonic decays of heavy quarks in the context of Heavy Quark Effective
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Theory (HQET) and derived bounds on the slope of the universal Isgur-Wise function. These papers
opened the way to many applications to the pion electromagnetic form factor and form factors
describing the semileptonic decaysB→ D(∗)ℓν , B→ πℓν , D → πℓν andK → πℓν (see [10]-[24]
and references therein). Also, suitable mathematical techniques were developed for covering more
complex situations, determined by the theoretical and experimental progress (for recent reviews
see [25, 26]).

In the present talk I give a brief presentation of these techniques and their applications. After a
short introduction to the standard Okubo approach, I discuss in Section 3 three functional extremal
problems related to this approach and its generalizations.In Section 4, I present several applications
to the pion electromagnetic form factor and the form factorsrelevant for the semileptonic decays
D → π lν andB→ π lν , leaving the presentation ofK → π lν to another talk at this Workshop [27].
A few concluding remarks are given in the final section.

2. Okubo approach

I illustrate the procedure in its modern version applied forthe first time in [8]. We start with
the polarization tensor of the weak currentJweak

µ relevant for the transitionP1 → P2ℓν :

i
∫

d4xeiq·x〈0|T
{

Jweak
µ (x)Jweak

ν (0)†} |0〉 = (−gµνq2 +qµqν)Π1(q
2)+qµqνΠ0(q

2), (2.1)

and write unsubtracted dispersion relations for the correlators:

χ1(Q
2) ≡−1

2
∂ 2

∂ (Q2)2

[

Q2Π1(−Q2)
]

=
1
π

∫ ∞

0
dt

tImΠ1(t)
(t +Q2)3 , (2.2)

χ0(Q
2) ≡ ∂

∂Q2

[

Q2Π0(−Q2)
]

=
1
π

∫ ∞

0
dt

tImΠ0(t)
(t +Q2)2 . (2.3)

Unitarity and positivity connect the spectral functions ofthe above dispersion relations to the weak
form factors defined in (1.2). Namely, keeping two-body states in the unitarity sum leads to the
inequalities

ImΠ1(t) ≥
3
2

1
48π

[(t − t+)(t − t−)]3/2

t3 | f+(t)|2, (2.4)

ImΠ0(t) ≥
3
2

t+t−
16π

[(t − t+)(t − t−)]1/2

t3 | f0(t)|2, (2.5)

wheret± = (MP1 ±MP2)
2. By inserting these inequalities into the dispersion relations (2.2) and

(2.3), one obtains the generic relation

1
π

∞
∫

t+

ρ(t)|F(t)|2dt ≤ I , (2.6)

whereρ(t) is a definite weight andI is calculated from perturbative QCD and OPE for the corre-
sponding correlators (we omitted for simplicity the dependence onQ2 of ρ andI ). To ensure the
validity of OPE, the spacelike momentumQ2 must be taken sufficiently large for light mesonsP1

andP2, while the choiceQ2 = 0 is reasonable for heavy-heavy or heavy-light form factors.
A comment about the connection of the relation (2.6) with thestability of analytic continuation

is of interest. As is known, analyticity has two facets, which may be referred to as its "splendour"
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and its "dangers". They are related to the fact that analyticcontinuation is unique, but it is also an
unstable (ill-posed) problem in the Hadamard sense. This means that two analytic functions very
close along a rangeΓ in the complex plane may differ arbitrarily much outsideΓ. There are many
phenomenological consequences of this instability: a notorious example is the poor determination
of resonances deep in the complex energy plane (likeσ or f0(500) in ππ scattering) from Breit-
Wigner parametrizations valid on the real axis.

A known mathematical result (known as Tikhonov regularization) stipulates that the analytic
continuation is stabilized if the class of admissible functions forms a compact set. It can be shown
(see Ciulli et al. [1]) that theL2-norm condition (2.6) derived from Okubo approach defines a
compact set in the Hardy spaceH2 of analytic functions with finiteL2-norm on the boundary [4],
and plays the role of a stabilizing condition which ensures the stability (i.e. the continuity with
respect to the input variation) of the extrapolation to points inside the holomorphy domain.

For the present discussion the crucial fact is that from condition (2.6) one can derive explicit
constraints on the values of the form factors at interior points and on the parameters of Taylor
expansions like (1.5) and (1.6). Mathematically, the problem belongs to the analytic interpola-
tion theory for functions in the Hardy classH2 [3, 4] and is known to physicists as the "Meiman
problem" [3]. In the next section we shall discuss three versions of physical interest.

3. Meiman problem and its generalizations

Problem 1: From the L2-norm condition (2.6) find constraints on the values F(tn) and the
derivatives F(k)(t j) at some real or complex points on the first Riemann sheet of thecomplex t-
plane outside the unitarity cut.

The problem is written in a canonical form by performing the conformal mapping

z̃(t, t0) =

√
t+ − t0−

√
t+− t√

t+ − t0+
√

t+− t
, (3.1)

which maps thet-plane cut fort > t+ onto the unit disk|z| < 1, wherez≡ z̃(t, t0). Heret0 < t+ is
an arbitrary parameter, denoting the point mapped onto the origin, z̃(t0, t0) = 0.

Consider further a so-called outer function [4],i.e. a function analytic and without zeros in
|z| < 1, with modulus squared on|z| = 1 equal toρ(t)|dt̃/dz|, wheret ≡ t̃(z, t0) is the inverse
of (3.1). Denoting byw(z) this function, it is written in general in terms of its modulus on the
boundary as2

w(z) = exp

[

1
2π

∫ 2π

0
dθ

eiθ +z
eiθ −z

ln[ρ(t̃(eiθ , t0))|dt̃/dz|]
]

. (3.2)

Then the functiong(z) defined by

g(z) = F(t̃(z, t0))w(z) (3.3)

is analytic in|z| < 1 and satisfies the inequality

1
2π

∫ 2π

0
|g(eiθ )|2dθ ≤ I . (3.4)

2In many cases of physical interest the functionw(z) has a simple analytic expression, see for instance [8, 13, 25, 22].
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With techniques of complex analysis [3, 4], one can show that(3.4) implies the positivity of the
following determinant and of its minors:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ī ξ̄1 ξ̄2 · · · ξ̄N

ξ̄1
z2K
1

1−z2
1

(z1z2)
K

1−z1z2
· · · (z1zN)K

1−z1zN
...

...
...

...
...

ξ̄N
(z1zN)K

1−z1zN

(z2zN)K

1−z2zN
· · · z2K

N

1−z2
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ 0, (3.5)

whereĪ = I −∑K−1
k=0 g2

k andξ̄n = g(zn)−∑K−1
k=0 gkzk

n are defined in terms of the values (for simplicity
we restricted to real pointszn and the derivatives atz= 0):

[

1
k!

dkg(z)
dzk

]

z=0
= gk, 0≤ k≤ K−1, g(zn) = ξn, zn = z∗n, 1≤ n≤ N. (3.6)

By using (3.3) one can express the inequality (3.5) as a quadratic constraint on the values of the
form factorF(t) and its derivatives. From this, upper and lower bounds onF(tn) at an arbitrary
point tn included in the set (3.6) are easily obtained by solving quadratic equations.

It is possible to implemented exactly also the phase in the elastic region, if it is available
through the Fermi-Watson theorem (1.4) and the known phase-shift of the related scattering ampli-
tude. The corresponding extremal problem is:

Problem 2: From the relations (1.4) and (2.6), find constraints on the values F(tn) and the
derivatives F(k)(t j) at some real or complex points on the first Riemann sheet outside the cut.

The problem can be solved exactly with standard techniques of functional optimization, which
lead to an integral equation of Fredholm type for a generalized Lagrange multiplier. The general
solution is given in [25, 26].

In physical situations, the condition (2.6) is sometimes replaced by the inequality

1
π

∞
∫

tin

ρ(t)|F(t)|2dt ≤ I ′, (3.7)

wheretin is the first inelastic threshold andI ′ is a known quantity. We can formulate then the
following extremal problem:

Problem 3: From the relations (1.4) and (3.7), find constraints on the values F(tn) and the
derivatives F(k)(t j) at some real or complex points on the first Riemann sheet outside the cut.

Note that the integral (3.7) fromtin to infinity is not available directly from Okubo approach.
If some data on the modulus belowtin are available, the quantityI ′ can be estimated by subtracting
the integral on the range(t+, tin) from the total integral (2.6), obtained from Okubo approach. For
the pion electromagnetic form factor, the recent high-statistics data on the modulus on the cut allow
a direct evaluation of the integral (3.7) for suitable choices of the weightρ(t), thus superseding the
Okubo approach.

The solution to Problem 3 is found by defining first the Omnès function (for t > tin, the un-
known phaseδ (t) ≡ arg[F(t + iε)] is taken as an arbitrary smooth function):

O(t) = exp

(

t
π

∫ ∞

t+
dt

δ (t ′)
t ′(t ′− t)

)

, (3.8)
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and define the functionh(t) by F(t) = O(t)h(t), which is obviously real belowtin, i.e. is analytic
in thet-plane cut only fort > tin. Then the condition (3.7) is written as

1
π

∞
∫

tin

ρ(t)|O(t)|2|h(t)|2dt ≤ I ′. (3.9)

Thush(t) satisfies the conditions of Problem 1, with two modifications: the t-plane cut fort > t+
is replaced by thet-plane cut fort > tin, and the weightρ(t) is replaced byρ(t)|O(t)|2. Therefore
the solution can be written in the form (3.5), where now the conformal mapping reads

z̃(t, t0) =

√
tin − t0−

√
tin − t√

tin − t0+
√

tin − t
, z̃(t0, t0) = 0 (3.10)

and the functiong(z) is defined by:

g(z) ≡ F(t̃(z, t0)) [O(t̃(z, t0))]
−1w(z)ω(z), (3.11)

involving the Omnès functionO(t) defined in (3.8) and the two outer functions [13, 25]

w(z) = exp

[

1
2π

∫ 2π

0
dθ

eiθ +z
eiθ −z

ln[ρ(t̃(eiθ , t0))|dt̃/dz|]
]

(3.12)

and

ω(z) = exp

(

√

tin − t̃(z, t0)

π

∫ ∞

tin
dt ′

ln |O(t ′)|√
t ′− tin(t ′− t̃(z, t0))

)

. (3.13)

Some rigorous properties of the bounds can be established: they are independent of the pa-
rametert0 in the conformal mappings (3.1) or (3.10) and remain the sameif the ≤ sign in (2.6) or
(3.7) is replaced by the equality sign. Moreover, the boundsdepend in a monotonous way on the
parameterI (I ′), in the sense that a larger value ofI (I ′) gives weaker constraints. An important
property of the solutions to Problems 2 and 3 is that the bounds do not depend on the arbitrary
phaseδ (t) for t > tin used as input in the Omnès function (3.8), if it is sufficiently smooth [13, 25].

One can show also that by varying the weightρ(t) in (2.6) or (3.7), when the weight is at our
disposal, we can approach the more stringent bounds given bythe equivalent conditions formulated
in the strongerL∞-norm [4], for instance as||F||L∞ ≡ sup

t>t+
|F(t)| ≤ I instead of (2.6). The strategy

for the choice ofρ(t) in such cases is to make a compromise between choices that lead to strong
bounds and the need to ensure a precise calculation of the parametersI in (2.6) orI ′ in (3.7).

A hierarchy of the extremal problems can be established: a rigorous result is that the bounds
obtained from Problem 2 are stronger than those obtained from Problem 1. In some cases, Problem
3 leads to results much stronger than Problem 2, because it implements explicitly through the
Omnès function the Riemann sheets of the elastic branch-point [13, 25].

From (3.5) it follows that interpolation theory correlatesexact values ofF(t) at points inside
the analyticity domain. However, the values used as input inpractical applications are in general
known with limited accuracy, and at least a part of the error is statistical. A nontrivial question
is how to merge the statistical errors with the formalism of bounds. A natural strategy is to vary
the input values inside the error bars and take the weakest bounds (i.e. the union of the individual
allowed domains for the output variables obtained with specific input values). Then it is reasonable
to attach to the predicted allowed domains the probability of the input values to be within their
quoted error intervals. Some illustrations are given in thenext section.
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4. Applications

Applications of the techniques discussed above were reported forB→ D(∗)ℓν decays [9, 11,
12], Kℓ3 form factors [14, 15, 18, 19],Bπ form factors [10, 16, 17],Dπ form factors [20] and
the pion electromagnetic form factor [13, 21, 22, 23, 24]. I mention that the list of references is
incomplete and I apologize for the omissions due to lack of space. More references are given in the
reviews [25, 26] and the papers quoted above.

The applications can be grouped into several types, which I shall illustrate with a few examples
(for results onKπ form factors see [27]).

4.1 Constraints on the low energy shape parameters

The shape parameters are defined by the Taylor series (1.5) or(1.6). They are of interest
for testing the expansions of ChPT, performing fits of semileptonic decay data and the precise
determination of the elements of the CKM matrix in flavour physics. Rigorous constraints on these
parameters have been derived for the pion electromagnetic form factor and for theBD(∗), Dπ and
Kπ form factors.

We illustrate first this application with theDπ form factors [20]. This is a typical application of
Okubo approach, where the condition (2.6) is obtained from the perturbative QCD/OPE calculation
of the heavy-light polarization function. Results for several moments which generalize the corre-
lators defined in (2.2) and (2.3) are available in the literature, leading to independent constraints
on the form factors (see [20]). In Figs. 4.1 we show the allowed domain for the slopeλ ′

0 and
curvatureλ ′′

0 of theDπ scalar weak form factor (with the scaleM in (1.6) taken asMπ). The left
panel illustrates the increase of the constraining power when various pieces of input are introduced
successively: the large ellipse is obtained with the solution to Problem 1 using only the integral con-
dition (2.6) and the normalizationf0(0) = 0.67±0.1, the intermediate ellipse is obtained by solving
Problem 2 with a model for the phase in the elastic region, andthe small ellipse is obtained by using
in addition a low energy theorem of Callan-Treiman (CT) type, f0(M2

D−M2
π) = 1.58±0.07. In the

right panel we show the small ellipses obtained with three integral conditions of the type (2.6). The
allowed domain is the intersection of the three domains. Thepoint corresponds to a recent pole fit.

-0.8 -0.4 0 0.4 0.8
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/
 x 10

2

-4

-2
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2
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λ 0//  x
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/
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Figure 1: Allowed domain for the slopeλ ′
0 and curvatureλ ′′

0 of the scalarDπ form factor.

Very strong constraints on the low energy parameters are obtained for the pion electromagnetic
form factor [13, 21, 23, 24]. In this case a very rich and precise information exists on the unitarity
cut: the phase below the first important inelastic thresholdtin = (Mω +Mπ)2 is known from Fermi-
Watson theorem (1.4) and the precise calculation of the phase shiftδ 1

1 of theP-wave ofππ elastic
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scattering from ChPT and dispersive (Roy) equations, whilethe modulus has been measured from
high statistics data one+e− → π+π− annihilation by several experimental groups, in particular up
to 3 GeV by BaBar collaboration. Moreover, a few precise measurements at spacelike momenta
t < 0 are now available. It turns out that the most suitable way toexploit this information is based
on Problem 3 of Section 3, with a suitable choice of the weightρ(t) in (3.7), which allows a precise
calculation of the integralI ′. As discussed in detail in [23], this strongly constrains the behaviour
of the form factor in the elastic region of the unitarity cut,below theωπ threshold, leading to
predictions more precise than the data at low energies and providing nontrivial consistency tests of
various data sets. Strong constraints are obtained also forthe shape parameters defined in (1.5): a
precise prediction for the charge radius is obtained without any specific parametrization [24]:

〈r2
π〉 = (0.43±0.01) fm2, (4.1)

while the next coefficients in (1.5) are restricted to the ranges 3.8 GeV−4 . c . 4.1 GeV−4 and
10.3 GeV−6 . d . 10.6 GeV−6, with a strong correlation among them [21, 24].

4.2 Zeros

The knowledge of the possible zeros of the form factors is important for testing symmetry
properties and in specific dispersion relations like the phase (1.8) and modulus (1.9) representa-
tions. The formalism discussed here can be used to define domains on the real axis and in the
complext-plane where zeros are excluded. To see this, insert the value F(tc)=0 in the determinant
(3.5), adding this assumption to the known input values. Obviously, if the inequality (3.5) is vio-
lated, the assumption that a zero is present is wrong. One obtains in this way a rigorous description
of the domains where zeros are forbidden. For illustration we present in Figure 4.2 such domains
obtained for theDπ scalar form factor and the pion electromagnetic form factor, with the input
discussed in Section 4.1.

Figure 2: Left: domain in the complext-plane without zeros for the scalarDπ form factor f0(t); right:
domain without zeros for the pion electromagnetic form factor (t in GeV2).

4.3 Extrapolation to spacelike energies

The input for the pion vector form factor used in Section 4.1 was exploited in [22] for deriving
model-independent upper and lower bounds on the form factorat spacelike momentaQ2 =−t > 0.
They are of interest for establishing the onset of the asymptotic regime of perturbative QCD, which
is expected to be rather slow in this case due to the complicated interplay between the soft and the
hard dynamics.
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In Fig. 4.3 we present upper and lower bounds on the productQ2F(−Q2) derived from the
solution of Problem 3, using the weightρ(t) = 1/

√
t. The inner white region denotes the allowed

domain delimited by the upper and lower bounds obtained withthe central values of the input,
while the cyan bands show the enlarged alowed domain, obtained by varying the input quantities
inside their error intervals. One can see that perturbativeQCD to LO is excluded forQ2 < 7 GeV2,
and perturbative QCD to NLO is excluded forQ2 < 6 GeV2, respectively. Among the theoreti-
cal models, some are consistent with the bounds, while others are in slight disagreement at large
energies (for details see [22])
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2 ]
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Braun, Khodjamirian, Maul (2000)

Radyushkin (2001)
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Grigoryan, Radyushkin (2007)

Brodsky, de Teramond (2008)

Bakulev, Pimikov, Stefanis (2009)

Figure 3: Bounds onQ2F(−Q2) along the spacelike axis, compared with perturbative QCD and several
nonperturbative models for the pion electromagnetic form factor.

4.4 Analytic parametrizations with unitarity constraints

The techniques presented above are useful also for controlling the free parameters and the
truncation errors of the specific expansions of weak form factors in the physical region of semilep-
tonic decays. The method was applied to theBD(∗) form factors [11, 12] and theBπ vector form
factor [17].

I briefly discuss the vector form factorf+(q2) of B→ πℓν semileptonic decay, of interest for
the determination of the element|Vub| of the CKM matrix. The parametrization [17]

f+(q2) =
1

(1−q2/M2
B∗)

K

∑
k=0

bk(t0)z
k , z= z̃(q2, t0) (4.2)

whereMB∗ < MB + Mπ , implements correctly analyticity and QCD asymptotic scaling. The stan-
dard Okubo approach gives a quadratic condition on the free coefficientsbk(t0):

K

∑
j,k=0

B jk(t0)b j(t0)bk(t0) ≤ 1, (4.3)

whereB jk(t0) are calculated in [17]. From the inequality (4.3) one can obtain an estimate of the
truncation error, defined as the magnitude of the first neglected term in the expansion (4.2). Based
on this, a strategy for controlling the total error was adopted in [17]: the numberK of terms in
(4.2) was increased until the systematic error became negligible in the entire semileptonic region
0 < q2 < (MB −Mπ)2 (this was achieved withK = 3 in (4.2)). Figure 4.4 shows the result of
the fit of semileptonic data and QCD sum rules and lattice calculations, for the optimal mapping
t0 = (MB + Mπ)(

√
MB−

√
Mπ)2 and the corresponding constraint (4.3). It leads to the prediction

|Vub| = (3.54±0.30)×10−3 [17].
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Figure 4: Bπ vector form factor determined from the constrained fit, shown with points from sum-rules
(LCSR) and lattice input. Right: numerator of the optimal parametrization. The band is the statistical error.

5. Conclusions

In this talk I presented more sophisticated analytic techniques that might be an useful alterna-
tive to the standard dispersion representations (1.7), (1.8) and (1.9), and to the specific parametriza-
tions usually adopted for the hadronic form factors. These techniques allow a more conservative
implementation of the available input on the modulus and thephase on the unitarity cut, avoiding
ad-hoc assumptions often adopted in standard approaches. Experimental data, low-energy theo-
rems of ChPT and lattice calculations at points inside the holomorphy domain provide a further
valuable input in the formalism. The price to be paid for the greater model-independence is the fact
that one can derive only upper and lower bounds on the quantities of interest, instead of making
definite predictions. However, due to the increased accuracy of the input, the bounds are often very
stringent, competing in precision with experiment and theoretical predictions. Therefore, the for-
malism proves to be a strong tool for precison predictions onhadronic form factors at low energies.
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