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1. Introduction

At Chiral Dynamics 2009, I presented a talk on Kaons on the Lattice in which the main topics
were: a) a discussion of the chiral behaviour, b) the determination of the Vus CKM matrix element
from K`2 and K`3 decays, c) the evaluation of the BK parameter of neutral kaon mixing as well
as d) the prospects for the evaluation of K → ππ decays amplitudes. Recent progress in lattice
simulations has led to an impressive precision in the evaluation of quantities such as Vus and BK

and hence in the corresponding phenomenology. For example, combining the experimental results
for the ratio of kaon and pion leptonic widths and the measured semileptonic K`3 decay amplitudes
with lattice calculations of the ratio of decay constants fK/ fπ and the K → π vector form-factor,
the Flavianet Lattice Averaging Group [1] quote:

|Vus|= 0.2254(9) and |Vud |= 0.97427(21) . (1.1)

If in addition we take the value of |Vud | = 0.97425 from super-allowed nuclear β -decays [2] then
the constraint on the unitarity of the first row of the CKM matrix is [1]

|Vud |2 + |Vus|2 + |Vub|2 =
{

1.0000(7) using lattice semileptonic form factor f+(0)

0.9999(6) using lattice ratio of decay constants fK/ fπ .
(1.2)

For the renormalization group invariant BK parameter FLAG quotes [1]: B̂K = 0.738(20) . For
K→ ππ decays in 2009 I discussed the prospects for the evaluation of the amplitudes.

At this conference we are hearing about the impressive progress in the precision of lattice
calculations of non-perturbative QCD effects in many flavour physics processes and in hadronic
structure. It now becomes both possible and necessary to extend the range of physical quantities
being studied. In this talk I will review the research programme of the RBC-UKQCD collabora-
tion in kaon physics, focussing on physical quantities which have not been computed previously in
lattice simulations. I start with a review of our recent calculation of A2, the K → (ππ)I=2 decay
amplitude (where I is the isospin) [3, 4]. The calculation is performed at (almost) physical kine-
matics and the results are presented in Eqs. (2.5) and (2.6) below. We find a value of Re A2 which
agrees with the experimental result and determine Im A2 for the first time. The corresponding am-
plitude with an I = 0 final state has not yet been evaluated but in Sec. 3 I report on our calculations
for pions of masses 330 and 420 MeV at threshold (i.e. with each of the two pions at rest) [5, 6].
The final two topics, the KL - KS mass difference discussed in Sec. 4, and rare kaon decays, dis-
cussed in Sec. 5, require the evaluation of long-distance effects represented by matrix elements of
the space-time integral of the time-ordered product of two composite operators (rather than the
standard calculation of the matrix elements of local operators). Finally I present a brief summary.

2. K→ (ππ)I=2 decay amplitudes

Before discussing the direct evaluation of A2, I need to introduce the ensembles which we use.
We have three datasets with N f = 2+1 Domain Wall Fermions (DWF), two with the Iwasaki gauge
action [7–9] and one with the Iwasaki+"Dislocation Suppressing Determinant Ratio" (IDSDR)
gauge action [10]. The properties of the actions and datasets can be found in these papers together
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units mπ mK Eπ,2 Eππ,0 Eππ,2 mK−Eππ,2

lattice 0.1042(2) 0.3707(7) 0.1739(9) 0.2100(4) 0.356(2) 0.015(2)
MeV 142.1(9) 505.5(3.4) 237(2) 286(2) 486(4) 20.0(3.1)

Table 1: The masses and energies of the mesons in the evaluation of the K → (ππ)I=2 decay amplitudes.
The subscripts 0,2 refer to the cases with each pion’s momentum |pπ | being 0 or

√
2π/L respectively.

with references to the original theoretical papers. For K → ππ decays at physical kinematics the
light pions propagate across long distances and hence we require a large physical volume and
therefore, in practice, a coarse lattice. We evaluate the matrix elements on a 323 spatial lattice with
the IDSDR gauge action and a lattice spacing a = 0.14 fm so that the spatial extent of the lattice
is approximately L = 4.58 fm in each direction. The unitary pions have masses of about 170 and
250 MeV and the matrix elements are evaluated with partially quenched pions with masses of about
142 MeV. The masses and energies are given in Tab. 1.

The amplitude A2 is given in terms of the K→ ππ matrix elements of the following operators:

O3/2
(27,1) = (s̄idi)L

{
(ū ju j)L− (d̄ jd j)L

}
+(s̄iui)L (ū jd j)L (2.1)

O3/2
7 = (s̄idi)L

{
(ū ju j)R− (d̄ jd j)R

}
+(s̄iui)L (ū jd j)R (2.2)

O3/2
8 = (s̄id j)L

{
(ū jui)R− (d̄ jdi)R

}
+(s̄iu j)L (ū jdi)R, (2.3)

where (27,1) denotes the representation of SU(3)L×SU(3)R under which the operator transforms
and the labels 7,8 are standard notation for the Electroweak Penguin operators (which transform as
the (8,8) representation). The calculation is simplified very significantly by the use of the Wigner-
Eckart Theorem:

I=2〈π+(p1)π
0(p2) |O3/2

1/2|K+〉=
√

3
2
〈π+(p1)π

+(p2) |O3/2
3/2|K+〉 , (2.4)

where the labels on the operators denote the change in the total isospin ∆I (superscript) and its
third component ∆IZ (subscript). The flavour structure of the operators O3/2

3/2 is (s̄d)(ūd), compared

to (s̄d)((ūu)− (d̄d)) + (s̄u)(ūd) for the operators O3/2
1/2 in Eqs.(2.1) - (2.3). By evaluating the

K+→ π+π+ matrix elements on the right-hand side of (2.4), and imposing antiperiodic boundary
conditions on one or more components of the d-quark and periodic boundary conditions on the
u-quark, we avoid the necessity of having to isolate an excited state [11, 12]. In particular by
imposing antiperiodic boundary conditions for the d-quark in two directions, the ππ ground state
is 〈π+(π/L,π/L,0)π+(−π/L,−π/L,0)) | and there is no state with each pion at rest. With the
parameters of the simulation this choice of |pπ+ |=

√
2π/L corresponds closely to a physical decay.

For a detailed description of the calculation, including the renormalization of the operators and
the evaluation of finite-volume effects, see [4]. Our final results for the amplitude A2 are:

ReA2= (1.381±0.046stat±0.258syst)10−8 GeV (2.5)

ImA2= −(6.54±0.46stat±1.20syst)10−13 GeV . (2.6)

The error budget is explained in detail in [4] and is summarised in Tab. 2. The dominant error
is due to lattice artefacts since the calculation was performed with a single, rather course, lattice
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Source ReA2 ImA2

lattice artefacts 15% 15%
finite-volume corrections 6.0% 6.5%

partial quenching 3.5% 1.7%
renormalization 1.8% 5.6%

unphysical kinematics 0.4% 0.8%
derivative of the phase shift 0.97% 0.97%

Wilson coefficients 6.6% 6.6%
Total 18% 19%

Table 2: Estimated systematic errors from each source to the evaluation of A2.

spacing. It will (almost) be eliminated when the calculation is repeated at a second lattice spacing.
The current 15% estimate, intended to be conservative, is obtained by (i) studying the dependence
on a of quantities which have been calculated at several lattice spacings including the one used for
this calculation, and in particular (ii) by determining the a dependence of BK , which is also given
by the matrix element of a (27,1) operator.

The result for Re A2 in (2.5) agrees well with the experimental value of 1.479(4)×10−8 GeV
obtained from K+ decays and 1.573(57)×10−8 GeV obtained from KS decays . Im A2 is unknown
so that our result provides its first direct determination. For the phase of A2 we find Im A2/ReA2 =

−4.42(31)stat(89)syst 10−5. We can combine our result for Im A2 with the experimental values of
Re A2, Re A0 = 3.3201(18)10−7 GeV and ε ′/ε to obtain:

ImA0

ReA0
=−1.61(19)stat(20)syst×10−4 . (2.7)

Of course, we wish to confirm this value directly and are working to achieve this.
Finally we present the contributions to A2 from the three operators renormalised in the MS-

NDR scheme at a scale of 3 GeV:

Re(A2)(27,1) (1.398±0.044)10−8 GeV Im(A2)(27,1) (1.55±0.36)10−13 GeV
Re(A2)7 (4.29±0.24)10−11 GeV Im(A2)7 (4.47±0.25)10−14 GeV
Re(A2)8 (−2.14±0.12)10−10 GeV Im(A2)8 (−8.14±0.47)10−13 GeV .

(2.8)

The dominant contribution to Re A2 comes, as expected, from the (27,1) operator and to Im A2 from
the EWP operator O3/2

8 (but with a non-negligible contribution from O3/2
(27,1)). More details can be

found in [4].

3. K→ (ππ)I=0 decay amplitudes

In the I = 0 channel the two pions have vacuum quantum numbers, which is the major obstacle
to a precise determination of A0. The two-pion contribution to correlation functions whose time (t)
behaviour is exp[−Eππ t] is obtained after subtracting the constant vacuum contribution leading to
a major loss of precision. To illustrate this, consider two-pion correlation functions which are an
important ingredient in the evaluation of A0 and A2. These are given by the four diagrams in Fig.1.
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Figure 1: The four contributions to the propagation of a two-pion state.
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Figure 2: The four contributions to the correlation function of two pions in an I=0 state.

The propagation of an I = 2 two-pion state is given by the combination D−C whereas the
propagation of the I = 0 state is proportional to the combination 2D+C-6R+3V. In [5] we report
on a high-statistics exploratory study of K→ ππ decays on a 163×32 Iwasaki lattice with a−1 =

1.73GeV and mπ ' 420 MeV. The propagators were evaluated with sources on each time-slice.
Fig.2 shows the four contributions to the I = 0 correlation function, illustrating that the error in the
V diagram (after the subtraction of the vacuum contribution) is the dominant one [13].

The evaluation of A0 requires the calculation of 48 K → ππ contractions which we classify
into the 6 different types in Fig.3. Mix3 and Mix4 are needed to subtract the power ultraviolet
divergences which are proportional to matrix elements of the pseudoscalar density s̄γ5d.

The results from our exploratory calculations for an (almost) on-shell (i.e. energy conserving)
decay of a kaon into two 420 MeV pions at rest are:

ReA0 = (3.80±0.82)10−7 GeV ImA0 =−(2.5±2.2)10−11 GeV
ReA2 = (4.911±0.031)10−8 GeV ImA2 =−(5.502±0.0040)10−13 GeV .

(3.1)

This is an exploratory calculation in which we are learning how to calculate A0. In spite of the un-
physical kinematics, all the ingredients were fully included. The device of applying anti-periodic
boundary conditions to a single quark field used in the evaluation of A2 in Sec. 2, cannot be used
for A0 and hence the calculations described here were performed with the pions at rest. We are
developing more sophisticated boundary conditions mixing quarks and anti-quarks and an isospin
rotation, the so called G-parity boundary conditions [14], in order to be able to perform calcula-

5
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Figure 3: The 6 types of diagram contributing to the correlation functions for the evaluations of A0.
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Figure 4: The two contractions 1© and 2© contributing to Re A2. They are distinguished by the colour
summation (i, j denote colour). s denotes the strange quark and L that the currents are left-handed.

tions at physical kinematics. We also continue to develop techniques to enhance the signal and to
evaluate disconnected diagrams effectively.

I mention in passing that the evaluation of disconnected diagram has allowed us to study the
masses and mixing of the η and η ′ mesons [15].

3.1 Emerging understanding of the ∆I = 1/2 Rule [16]

Although the calculation of A0 described above was performed at unphysical kinematics it
nevertheless already shows a significant relative enhancement of A0 compared to A2. This study
has recently been extended to the 243 Iwasaki ensembles [7], still with a−1 = 1.73 GeV but with
mπ ' 330MeV, and the results for the ∆I = 1/2 rule can be summarised as:

1. 163×32 ensembles; 877 MeV kaon decaying into two 422 MeV pions at rest:

ReA0

ReA2
= 9.1(21) . (3.2)

2. 243×64 ensembles; 662 MeV kaon decaying into two 329 MeV pions at rest:

ReA0

ReA2
= 12.0(17) . (3.3)
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Figure 5: The contractions 1©, − 2© and 1©+ 2© as functions of t. The left hand plot corresponds to the
simulation at physical masses and kinematics described in Sec.2 and the right-hand plot to the 243 simulation
with 330 MeV pions at rest.

While these results differ significantly from the observed value of 22.5, because the calculations
were not performed at physical kinematics, it is nevertheless interesting to understand the origin of
the significant enhancement of the ratios in (3.2) and (3.3). We find that almost all of the contribu-
tion to the real parts of A0 and A2 come from the matrix elements of the current-current operators.
The correlation function for Re A2 is simply proportional to the sum 1©+ 2© of the two contrac-
tions shown in Fig. 4 1. Colour counting (vacuum-insertion hypothesis) suggests that 2© ≈ 1

3 1©
but our calculations show that this is not the case. For both the 163 and 243 simulations for which
Re A0/Re A2 is given in (3.2) and (3.3) respectively and for the simulation at physical kinemat-
ics described in Sec. 2 for which Re A2 is given in (2.5), contractions 1© and 2© have an opposite
sign and comparable magnitude. This is illustrated in Fig.5 where the very significant cancellation
between 1© and 2© is evident. We note that while most early phenomenology was performed as-
suming the approximate validity of the vacuum insertion hypothesis, the authors of [17] also found
a suppression of Re A2 using the 1/N expansion with a particular ansatz for matching the short and
long-distance factors at scales of 0.6-0.8 GeV.

No calculation of A0 has yet been performed at physical kinematics, but for both the 163 and
243 simulations the largest contribution comes from the current-current operators. The coefficients
of the dominant contractions 1© and 2© now enter with opposite signs leading to an enhancement
of ReA0. The largest contribution comes from the operator traditionally labelled Q2 for which the
correlation function is proportional to 2 1©- 2© whereas that for Q1, which is the next largest, is
proportional to 2 2©- 1©. Both contribute with the same sign to ReA0.

A definitive quantitative explanation of the ∆I = 1/2 rule awaits the completion of a compu-
tation of Re A0 at physical masses and kinematics and the reproduction of the experimental result
Re A0/Re A2 ' 22.5. Nevertheless we find that the picture which is emerging from our calculations
is convincing. It suggests that the origin of the ∆I = 1/2 rule is a combination of the well-known
factor of approximately 2 due to the perturbative running from the electroweak scale to a few GeV,
the suppression of Re A2 due to the cancellation in 1©+ 2© and a corresponding enhancement in A0.
We stress that the suppression in Re A2 has been observed in the calculation at physical masses

1The notation n©, n = 1 - 48, was introduced in [5] to label the 48 contractions contributing to the calculation of A0.

7
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Figure 6: Schematic diagram of the evaluation of long-distance contributions to ∆mK . The integrals in (4.2)
are performed over the fiducial volume tA ≤ tx,y ≤ tB. n labels a generic state between the two HW .

and kinematics described in Sec.2 [16]. This picture is supported by the observation that Re A0 is
found to depend only mildly on the quark masses with the results from the 163 and 243 simula-
tions already close to the physical value. Re A2 on the other hand depends more strongly on the
kinematics, a dependence which we attribute to the strong partial cancellation between 1© and 2©.

4. The KL – KS Mass Difference [18]

In this and the following section I will discuss our early attempts to extend the range of physical
quantities which can be computed in lattice simulations by computing long-distance contributions.
These are not given in terms of matrix elements of local operators but require the evaluation of
integrals of non-local products of operators such as

∫
d4x

∫
d4y 〈h2 |T{O1(x)O2(y)}|h1〉 , (4.1)

where O1,2 are local composite operators. For ∆mK = mKL−mKS , the relevant integral is
∫

d4x
∫

d4y 〈 K̄0 |T{HW (x)HW (y)}|K0〉 , (4.2)

where HW is the ∆S = 1 weak Hamiltonian. In both (4.1) and (4.2) T represents time-ordering.
In a finite volume, the practical way to isolate the initial and final states correctly while still

performing the time integrals is to integrate over a large subinterval in time, tA ≤ tx,y ≤ tB, and
to create the K0 and annihilate the K̄0 well outside of this region (see Fig. 6). This is the natural
modification of standard field theory for which the asymptotic states are prepared at t →±∞ and
then the operators are integrated over all time. The corresponding 4-point correlation function is

C4(tA, tB; ti, t f ) = |ZK |2e−mK(t f−ti)∑
n

〈K̄0 |HW |n〉〈n |HW |K0〉
(mK−En)2

{
e(MK−En)T − (mK−En)T −1

}
,

(4.3)
where T = tB− tA +1 and ZK is the matrix element of the kaon interpolating operator between the
vacuum and a kaon at rest. From the coefficient of T we can obtain

∆mFV
K ≡ 2∑

n

〈K̄0 |HW |n〉〈n |HW |K0〉
(mK−En)

. (4.4)

In order to evaluate ∆mK itself we need to be able to:

8
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Figure 7: Four types of diagram which have to be evaluated for the calculation of ∆mK .

1. Relate ∆mK and ∆mFV
K . This is an extension of the theory of finite-volume effects for two-pion

states including the Lüscher quantization condition and the Lellouch-Lüscher factor [18, 19].
2. Control the additional ultraviolet divergences as the weak Hamiltonians come close together.
This is facilitated by the GIM mechanism requiring the presence of charm quarks. We find that
after the GIM subtraction of the power divergences there are no remaining logarithmic ones [18].
3. Evaluate the four types of diagram illustrated in Fig. 7.

In our exploratory study on the 163 ensembles with mπ = 420 MeV, we only evaluate the
type 1 and 2 graphs. The development of techniques necessary to evaluate disconnected diagrams
effectively is an area of worldwide active research and in this study we focus instead on learning
how to control the remaining systematics. The physical value of ∆mK is 3.483(6)× 10−12 MeV,
whereas we obtain values in the range {5.81(28) – 10.58(75)}×10−12 MeV as mK is varied from
563 to 839 MeV. In spite of the unphysical masses and neglecting type 3 and 4 diagrams we are
nevertheless able to obtain a result reasonably close to the physical value and we are encouraged to
proceed to a full physical calculation.

The details of our study are presented in [18]. As an example of the investigations, consider
the ultraviolet behaviour of the Q1 – Q1 correlation function (i.e. taking the Q1 component of HW in
(4.2)) without the GIM subtraction but with an artificial lower cut-off, R =

√
{(ty−tx)2+(~x−~y)2},

on the separation of the two Q1 insertions. The plot in Fig.8 exhibits the quadratic divergence as
the two operators come together. This divergence is canceled by the GIM mechanism.

5. Rare Kaon Decays

Rare kaon decays which are dominated by short-distance FCNC processes, K→ πνν̄ in par-
ticular, provide a potentially valuable window on new physics at high-energy scales. The decays
KL→ π0e+e− and KL→ π0µ+µ− are also considered promising because the long-distance effects
are reasonably under control using ChPT. They are sensitive to different combinations of short-

9
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Figure 8: Contribution to the mass difference from the correlation function of Q1 – Q1 as a function of the
cut of radius R as described in the text. The curve is a fit to the function b/R2 + c, where b,c are constants.
The quadratic divergence is cancelled when the GIM mechanism is applied.

distance FCNC effects and hence in principle provide additional discrimination to the neutrino
modes. A challenge for the lattice community is therefore either to calculate the long-distance
effects reliably or at least to determine the Low Energy Constants of ChPT.

As an example consider the decay KL→ π0`+`− which has three main contributions to the am-
plitude [20], (i) short distance contributions corresponding to matrix elements of the local operators
(s̄γµd)( ¯̀γµ`) and (s̄γµd)( ¯̀γµγ5`); (ii) long-distance indirect CP-violating contribution from the
CP-even component of KL, AICPV (KL→ π0`0`−) = εA(K1→ π0`+`−) and (iii) the two-photon CP-
conserving contribution KL→ π0(γ∗γ∗→ `+`−). For the corresponding phenomenology see [21];
for example the branching ratios for the CP-violating component are:

Br(KL→ π
0e+e−)CPV = 10−12 ×

{
15.7|aS|2±6.2|aS|

(
Imλt

10−4

)
+2.4

(
Imλt

10−4

)2
}

(5.1)

Br(KL→ π
0
µ
+

µ
−)CPV = 10−12 ×

{
3.7|aS|2±1.6|aS|

(
Imλt

10−4

)
+1.0

(
Imλt

10−4

)2
}

, (5.2)

where aS is the amplitude for the decay KS ' K1→ π0`+`−. |aS| = 1.06+0.26
−0.21 but the sign of aS is

unknown. One goal of future lattice calculations is the determination of aS, together with similar
other quantities.

The generic non-local matrix elements which we wish to evaluate are

X ≡
∫

∞

−∞

dtx d3x 〈π(p) |T
[

Jµ(0)HW (x)
]
|K(~0)〉 (5.3)

= i ∑
n

〈π(p) |Jµ(0) |n〉〈n |HW (0) |K(~0)〉
mK−En + iε

− i ∑
ns

〈π(p) |HW (0) |ns〉〈ns |Jµ(0) |K(~0)〉
Ens−Eπ + iε

. (5.4)

Jµ represents a vector or axial current and {|n〉} and {|ns〉} represent complete sets of non-strange

10
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and strange states. In Euclidean space we envisage calculating correlation functions of the form

C ≡
∫ Tb

−Ta

dtx 〈φπ(~p, tπ)T
[

Jµ(0)HW (tx)
]

φ
†
K(
~0, tK)〉 ≡

√
ZK

e−mK |tK |

2mK
XE
√

Zπ

e−Eπ tπ

2Eπ

,

where φπ and φK are interpolating operators and

XE− = −∑
n

〈π(p) |Jµ(0) |n〉〈n |HW (0) |K〉
mK−En

(
1− e(mK−En)Ta

)
and (5.5)

XE+ = ∑
ns

〈π(p) |HW (0) |ns〉〈ns |Jµ(0) |K〉
Ens−Eπ

(
1− e−(Ens−Eπ )Tb

)
. (5.6)

We use the time dependence to subtract the exponential terms.
The authors of ref. [22] investigated the ultraviolet behaviour as the current Jµ approaches HW .

Dimensional counting allows for a quadratic divergence but gauge invariance for the vector current
suggests that the degree of divergence is reduced by 2 to result in a logarithmic divergence. This
was checked in an explicit one-loop perturbative calculation for Wilson and Clover fermion actions
in [22]. This absence of power divergences does not require the use of the GIM mechanism and for
a chiral symmetric formulation of lattice QCD, such as DWF, the same applies for the axial current.

The primary reason for discussing the prospects for calculations of rare kaon decay amplitudes
at this conference is to encourage a discussion with the wider community with the aim of optimising
plans for our future research programme at an early stage.

6. Summary, Conclusions and Prospects

The goal of the lattice flavour-physics community is to develop a programme with an ever
increasing precision and a growing range of physical quantities which can be studied. Precision
flavour physics complements the large p⊥ approach to testing the limits of the standard model and
searches for new physics. Standard quantities, such as quark masses, mesonic decay constants, BK

and K`3 form factors are now calculated with excellent precision [1]. In this talk I have reviewed
recent progress from the RBC-UKQCD collaboration, focussing in particular on new quantities in
kaon physics which we are learning to compute.
•We have performed the first direct calculation of the K→ (ππ)I=2 decay amplitude A2. The cal-
culation was performed at physical kinematics and the priority now will be to reduce substantially
the main source of systematic uncertainty, that due to lattice artefacts, by repeating the calculation
at other lattice spacings.
• Although significant technical problems remain, we are well on our way to calculating A0. The
development of G-parity boundary conditions will enable us to perform the calculations at physical
kinematics and hence to understand the ∆I = 1/2 rule quantitatively and to reproduce the experi-
mental value of ε ′/ε , both from first principles.
•An explanation of the ∆I = 1/2 rule is emerging from our calculations. In particular, in contradic-
tion to expectations from the vacuum insertion hypothesis, there is a very significant cancellation
between the two contributions to ReA2 and hence an enhancement of ReA0/ReA2.
•We are beginning to tackle the calculation of long-distance effects in ∆mK and rare kaon decays.
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Finally I stress most strongly, that as the range of quantities which can be studied in lattice
simulations is increased, we will need continued collaboration with both the theoretical and exper-
imental Chiral Dynamics communities to organise our projects most effectively.

Acknowledgements I warmly thank my colleagues from the RBC-UKQCD collaboration with
whom the ideas and calculations described in this talk were developed and performed. I acknowl-
edge partial support from STFC Grant ST/G000557/1.

References

[1] G. Colangelo, S. Durr, A. Juttner, L. Lellouch, H. Leutwyler, V. Lubicz, S. Necco and C. T. Sachrajda
et al., Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408 [hep-lat]].

[2] J. C. Hardy and I. S. Towner, Phys. Rev. C 79 (2009) 055502 [arXiv:0812.1202 [nucl-ex]].

[3] T. Blum, P. A. Boyle, N. H. Christ, N. Garron, E. Goode, T. Izubuchi, C. Jung and C. Kelly et al.,
Phys. Rev. Lett. 108 (2012) 141601 [arXiv:1111.1699 [hep-lat]].

[4] T. Blum, P. A. Boyle, N. H. Christ, N. Garron, E. Goode, T. Izubuchi, C. Jung and C. Kelly et al.,
Phys. Rev. D 86 (2012) 074513 [arXiv:1206.5142 [hep-lat]].

[5] T. Blum, P. A. Boyle, N. H. Christ, N. Garron, E. Goode, T. Izubuchi, C. Lehner and Q. Liu et al.,
Phys. Rev. D 84 (2011) 114503 [arXiv:1106.2714 [hep-lat]].

[6] Qi Liu, Ph.D. thesis (2012) Columbia University.

[7] C. Allton et al. [RBC-UKQCD Collaboration], Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473
[hep-lat]].

[8] C. Allton et al. [RBC and UKQCD Collaboration], Phys. Rev. D 76 (2007) 014504 [hep-lat/0701013].

[9] Y. Aoki et al. [RBC and UKQCD Collaborations], Phys. Rev. D 83 (2011) 074508 [arXiv:1011.0892
[hep-lat]].

[10] R. Arthur et al. [RBC and UKQCD Collaborations], arXiv:1208.4412 [hep-lat].

[11] C. Kim, Nucl. Phys. Proc. Suppl. 129 (2004) 197 [hep-lat/0311003].

[12] C. H. Kim, Nucl. Phys. Proc. Suppl. 140 (2005) 381-383.

[13] Q. Liu [RBC and UKQCD Collaboration], PoS LATTICE 2010 (2010) 314 [arXiv:1010.3768
[hep-lat]].

[14] C. Kim and N. H. Christ, PoS LAT 2009 (2009) 255 [arXiv:0912.2936 [hep-lat]].

[15] N. H. Christ, C. Dawson, T. Izubuchi, C. Jung, Q. Liu, R. D. Mawhinney, C. T. Sachrajda and A. Soni
et al., Phys. Rev. Lett. 105 (2010) 241601 [arXiv:1002.2999 [hep-lat]].

[16] P. A. Boyle et al. [RBC and UKQCD Collaborations], arXiv:1212.1474 [hep-lat].

[17] W. A. Bardeen, A. J. Buras and J. M. Gerard, Phys. Lett. B 192 (1987) 138.

[18] N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu, arXiv:1212.5931 [hep-lat].

[19] N. H. Christ, G. Martinelli and C. T. Sachrajda (in preparation).

[20] F. Mescia, C. Smith and S. Trine, JHEP 0608 (2006) 088 [hep-ph/0606081].

[21] V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Rev. Mod. Phys. 84 (2012) 399
[arXiv:1107.6001 [hep-ph]].

[22] G. Isidori, G. Martinelli and P. Turchetti, Phys. Lett. B 633 (2006) 75 [hep-lat/0506026].

12


