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1. χEFT for the NN system since Weinberg: what is an appropriate level of naiveté?

This series of meetings focuses on manifestations of chiral dynamics in systems of hadrons.
Over the past twenty years, effective field theories (EFTs) have played a key role in improving our
knowledge in this area. In particular, chiral perturbation theory (χPT) has been applied, with great
success, to meson dynamics, and to the interactions of pions and photons with a single nucleon.
Nuclei, however, cannot be directly addressed within χPT. χPT yields a purely perturbative expan-
sion in powers of (p,mπ)/ΛχSB (with ΛχSB nominally mρ ∼ 4π fπ ) for the scattering amplitude.
Nuclei are bound states, and so cannot be generated from such an expansion. In this talk I will de-
scribe twenty years of effort to develop an EFT, which I refer to as χEFT, that extends the benefits
of χPT to systems with A≥ 2. That EFT should have the following features:

• Encode the consequences of QCD’s spontaneously and explicitly broken chiral symmetry.

• Treat at least part of the problem non-perturbatively, so that bound states emerge naturally.

• Nevertheless, yield predictions for observables which can be understood as an expansion in
Mlo/Mhi (with Mlo and Mhi mass scales “to be named later").

• Be renormalizable order-by-order in this expansion parameter.

Such a treatment of few-nucleon systems would enable a priori error estimates. It would also
permit identification of features of those systems which are a consequence of the pattern of chiral-
symmetry breaking in QCD, thereby linking nuclear physics to QCD in a model-independent way.

In the early 1990s Weinberg argued that the infrared enhancement associated with multi-
nucleon intermediate states meant that the χPT expansion could not be applied directly to the scat-
tering amplitude in systems with A > 1 [1]. He pointed out that the χPT Lagrangian and counting
rules could be used to compute the NN potential, V (and, by extension, any two-nucleon-irreducible
NN operator), up to some fixed order, n, in χPT. Such an expansion can then be examined for con-
vergence with n. At the energies where χPT can usefully be applied to nuclear physics the nucleons
are non-relativistic, and so Weinberg proposed to incorporate the effects of NN intermediate states
in χEFT by inserting the χPT V into the Schrödinger equation:

(E−H0)|ψ〉= V |ψ〉, (1.1)

with |ψ〉 the wave function of the NN system. At leading order (LO) the potential may be written:

〈p′|V (0)|p〉= C3S1P3S1 +C1S0P1S0 +V1π(p′−p); V1π(q) =−τ
a
1 τ

a
2

g2
A

4 f 2
π

σ1 ·qσ2 ·q
q2 +m2

π

, (1.2)

where V1π is the one-pion-exchange potential, Pa is a projector onto the NN partial wave a, and
Ca is a low-energy constant (LEC) appearing in the NN piece of the chiral Lagrangian. These are
the only two contact operators in the NN part of the chiral Lagrangian which have dimension zero.
Thus, according to naive dimensional analysis (NDA), they should be the only ones present in this
chiral-dimension-zero operator. To solve Eq. (1.1) with this V one must introduce a cutoff, Λ, on
the intermediate states, because the χPT potentials grow with momenta. The contact interactions
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should then absorb the dependence of the effective theory’s predictions on Λ in all low-energy
observables. Otherwise we conclude that the theory is unable to give reliable predictions.

The χPT potential V was computed to O(P3) in Refs. [2, 3, 4], and to O(P4) in Refs. [5, 6].
The various NN LECs that appear in V were fitted to data for Λ in the range 500–800 MeV. The
resulting predictions—especially the ones obtained with the O(P4) potential—contain very little
residual cutoff dependence in this range of Λ’s, and describe NN data with considerable accuracy.

Consistent three-nucleon forces have been derived and implemented in such an approach [7, 8].
The NN and 3N forces have been employed to compute nuclei up to sizable values of A, with sig-
nificant gains in our understanding of nuclear structure [17, 18]. They have also been used to
compute 3N scattering [19], and are now being employed to describe more complicated scatter-
ing processes [20]. The theory of few-nucleon systems proposed by Weinberg has also been used
for electron-deuteron scattering [21], magnetic moments and capture in light nuclei [22], Helium-
4 photoabsorption [23], weak reactions [24], and Compton scattering in the NN and NNN sys-
tems [25]. The approach implemented in these works, and many others, has been very successful,
leading to marked improvements in the phenomenology of few-nucleon systems, and insights into
3N forces which are relevant to larger nuclei, nuclear matter and neutron stars.

But, a nagging question remains: is it an EFT? While there is an expansion for V , that V is then
iterated to all orders via Eq. (1.1), so there is no—or at least, no obvious—perturbative expansion
for observables. Moreover, if “renormalization" is taken to have its usual meaning in an EFT, this
approach is not properly renormalized. Several papers have shown that Eqs. (1.1) and (1.2) do not
yield stable predictions once cutoffs larger than ∼ 800 MeV are considered [9, 10, 11, 12, 13, 14].
The impact of short-distance physics on observables is thus not under control. In an EFT taking the
cutoff Λ→ ∞ does not necessarily result in a decrease in the errors due to short-distance physics
in the calculation [15, 16]. But, at the very least, we should be able to vary Λ by a factor ∼ 2
around ΛχSB, without the predictions of our “χEFT" going haywire. This criterion is not satisfied
if V (0)—or higher-order V ’s [26, 27]—are inserted in Eq. (1.1). The two connected deficiencies of
χEFT as presently practiced: lack of an expansion parameter and lack of renormalization, make it
quite difficult to to formulate a priori error estimates in a calculation.

In order to obtain a theory which can truly be called “χEFT" we need to re-examine the
reason for iterating V (0), so as to obtain a well-defined, renormalized leading order. We can then
perturb around this result, computing higher orders in the EFT which are demonstrably small in
an expansion parameter Mlo/Mhi. I emphasize that I am not suggesting that all of nuclear physics
should be calculated in this perturbative expansion. This is not necessary, or even wise. The goal is
to understand what terms must be included in order to achieve some specified accuracy (Mlo/Mhi)n.
We can then include that physics in a potential which can be used with a low cutoff to calculate
nuclear structure and reactions. In this way we may a postieri justify (or even, perhaps, improve
upon!) the work that has been done using χPT expansions for V and other operators.

2. The “new leading order" and its discontents

The first step towards this goal is to understand the size of iterates of one-pion exchange.
Iterates of V1π become comparable with the tree-level graph for momenta of order ΛNN = 16π f 2

π

g2
AM ≈

300 MeV [28, 29, 9, 12]. Crudely speaking, ΛNN is the momentum scale at which the tensor part of

3



P
o
S
(
C
D
1
2
)
0
1
3

Recent results in χEFT for NN Daniel R. Phillips

one-pion exchange becomes non-perturbative. That part of V1π(r) corresponds to a 1/r3 potential
that couples NN partial waves obeying ∆L = 2. Importantly, the tensor part of one-pion exchange
does not appear in waves with S = 0. It is also screened by the centrifugal barrier in partial waves
of sufficiently large L [12].

Consequently one-pion exchange can be treated perturbatively in higher partial waves, as has
been known for decades. V1π is weak enough that employing the standard χPT counting rules to
compute the NN scattering amplitude yields a good description of NN phase shifts in F-, G-, . . .

waves, as demonstrated by Kaiser et al. more than 15 years ago [30].
In contrast, in partial waves of low L with S = 1, we need to iterate one-pion exchange if we

wish to describe processes at p ∼ ΛNN . In this regime leading order requires that we treat V1π

non-perturbatively, i.e. solve the Schrödinger equation with this potential. In the 3S1-3D1 channel,
in the triplet P-waves, and possibly also in D-waves, we must generate the full LO Green’s function
corresponding to Eqs. (1.1) and (1.2) as:

G = G0 +G0V (0)G, (2.1)

with G0 the free Green’s function for the propagation of two nucleons. This begins to define
LO in an NN χEFT with Mlo = {mπ , p,ΛNN} and Mhi = ΛχSB. Higher-order pieces of the χPT
potential—most notably the two-pion-exchange graphs in V (2) and V (3)—can be treated as pertur-
bations, since they are suppressed by (ΛNN/ΛχSB)n. In order to make sure the LO calculation is
renormalized V1π needs to be supplemented by contact interactions. The issue that must be resolved
is: which ones? If the two written in Eq. (1.2) are not sufficient, what guide shall we use to decide
which contact operators that are higher order from the point of view of NDA should be included?

In S waves the two contact interactions of Eq. (1.2) are sufficient, and the solution to Eq. (1.1)
is stable for a wide range of cutoffs [9, 31, 14]. From the Green’s function we extract wave functions
for the deuteron (see Fig. 1) that can be used to compute, e.g. electron-deuteron scattering [32].

Features of these wave functions reflect the presence of the tensor 1/r3 potential. At short
distances this singular, attractive potential generates two regular solutions:

uA
1 (r) = (ΛNNr)3/4 cos

(
4[ΛNNr]−1/2

)
;uA

2 (r) = (ΛNNr)3/4 sin
(

4[ΛNNr]−1/2
)

. (2.2)

The Schrödinger equation with a potential ∼ 1/rn with n < 2 has one regular and one irregular
solution. In contrast, here we have two equally regular solutions. A boundary condition is needed
to fix their relative phase [33, 34, 35, 12, 13]. A repulsive 1/r3 potential generates solutions:

uR
1 (r) = (ΛNNr)3/4 exp

(
−4[ΛNNr]−1/2

)
;uR

2 (r) = (ΛNNr)3/4 exp
(

4[ΛNNr]−1/2
)

, (2.3)

and, here too, in principle, a boundary condition is required to set the relative strength at short
distances. However, the choice of that boundary condition is numerically irrelevant, because of the
rapid exponential fall off of uR

1 .
This behavior of wave functions at distances r� 1/ΛNN is, it turns out, what drives the cutoff

dependence and independence of calculations with V (0) in different partial waves. In the 3S1-3D1

case, the contact term ∼ P3S1 in Eq. (1.2) sets the phase between u1 and u2. In consequence the
predictions for deuteron wave functions u(r) and w(r) are stable as Λ→ ∞, as seen in Fig. 1. But,
if V (0) is used to compute, e.g. phase shifts, in a channel where such a contact interaction is not
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Figure 1: Predictions for the deuteron radial wave functions u(r) (3S1) and w(r) (3D1) for different values
of the momentum-space cutoff Λ. Also shown, for comparison, are the radial wave functions of the AV18
potential [32].

present, there is no mechanism that enforce a particular short-distance phase between uA
1 and uA

2 .
That phase is instead set by the regulator at p ∼ Λ, and this regulator dependence propagates to
long distances and yields phase shifts that are strongly cutoff dependent, see, e.g. Fig. 2.

This answers the question of how to supplement V1π by contact interactions and obtain a
renormalized LO χEFT calculation. As advocated in Ref. [11], contact terms must be included
that set the phase at short distances when that phase is relevant. This means adding to V (0), at least,
contact terms ∼ P3P0 and ∼ P3P2. This yields a “new leading order" V of χEFT. (I say more about
whether contact operators must be included in D-waves below.) There appears to be no need to
include a LO contact term ∼ P3P1, since the tensor piece of one-pion exchange is repulsive there,
and so V1π can be iterated to generate cutoff-independent predictions. The qualitative arguments I
present here regarding the correct LO V for χEFT can be made rigorous by formulating the problem
as one of requiring renormalization-group (RG) invariance for, e.g. G of Eq. (2.1), see Ref. [12].

Regardless of whether the argument is made in momentum space or co-ordinate space, and
whether it is made using the RG or by examining the solutions of the Schrödinger equation, the
conclusion is that the NN-system wave function is highly distorted at short distances, because of
the strong 1/r3 potential that is operative there. The failure of naive dimensional analysis to predict
which contact operators are necessary for renormalization at leading order is just a consequence
of the fact that these solutions are not plane waves, and are not even perturbatively close to being
plane waves. The scaling of short-distance operators is thus very different from what it is in χPT.
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Figure 2: Phase shifts at Tlab = 10 MeV (solid) and 50 MeV (dashed), as a function of the momentum-space
cutoff Λ, for the NN 3P2 channel with V = V1π . From Ref. [11]. Used with permission.

Various attempts to circumvent these complications due to strong interactions at short dis-
tances have been suggested. Beane, Kaplan, and Vuorinen proposed to make V1π weaker, by apply-
ing a Pauli-Villars regulator. They argue it can even be made perturbative, with its short-distance
strength shuffled into contact operators. This scheme has been worked out up to NNLO for the
3S1-3D1 partial wave, with encouraging results [36]. Its performance in the controversial P-waves
has not been publicized. Recent work described by Gegelia at this meeting has proposed the use
of a relativistic NN propagator for G0 [37]. This softens the integrals for iterates of V1π . Indeed, at
short distances the problem can be shown to be the solution of a 1/r2 potential in two dimensions.
Some contact terms beyond those mandated by NDA are still needed, but not as many as were
proposed in Ref. [11]. Lastly, Epelbaum and Meißner argued that discussing the behavior of V1π

for r� 1/ΛNN is a fruitless exercise, since the small separation between ΛNN and ΛχSB means that
we very quickly descend into an examination of features of the χPT potential which are artifacts of
χPT’s status as an effective theory [16]. For this reason, many practitioners continue to advocate,
and employ, a cutoff which never rises above values ∼ mρ .

At least two of these suggestions could lead to a systematic χEFT for few-nucleon systems.
This contribution is not long enough that I can do all the proposals justice, so in the space that
remains I will discuss higher orders in the EFT that is built upon the “new leading order" proposed
in Ref. [11]. This is also the proposed expansion for which the most detailed analyses of higher-
order effects have been carried out.

3. Higher orders in χEFT

For an EFT to be useful it must converge as higher orders in the expansion are computed. In
this section we discuss the behavior of a perturbative expansion built on the LO calculation defined
in the previous section.

The EFT expansion for the long-distance part of the χPT potential V is not controversial.
Once the particle content of the theory is fixed—and here we deal solely with the “Delta-less"
theory that contains only pion and nucleon degrees of freedom—the relative size of the various
two-pion, three-pion, etc. mechanisms is dictated by the power counting of χPT, as envisioned by
Weinberg [1]. The contentious issue is the power counting for the short-distance operators. We will
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now show how power counting for these operators can be established via a renormalization-group
analysis of matrix elements of the long-distance potential between LO wave functions.

GG
2

Figure 3: Diagram representing the perturbative correction to the leading-order Green’s function due to an
insertion of the sub-leading two-pion-exchange potential derived from χPT.

We take as an example matrix elements of the “sub-leading two-pion-exchange potential",
V (3)

2π
. This generates the correction to the leading-order Green’s function G depicted in Fig. 3. The

pertinent matrix elements of this potential are 〈ψ(0)|V (3)
2π
|ψ(0)〉, where |ψ(0)〉 is the wave function

extracted from the (renormalized) LO Green’s function (2.1). We will add to this a matrix element
of a sub-leading contact interaction (which must also be inserted between LO G’s), in order to
obtain an overall finite result. The contact interaction must be chosen such that the total result is
independent of the short-distance cutoff placed on the integrals in the matrix-element calculation,
rc. To compute the dependence of the matrix element of V (3) on rc we need only the short-distance
behavior of the LO wave functions (2.2) and (2.3) and that MV (3)

2π
∼ ΛNN

Λ4
χSBr6 . It then follows that

〈ψ(0)|MV (3)
2π
|ψ(0)〉 ∼

Λ
5/2
NN

Λ4
χSB

1

r7/2
c

+
Λ

5/2
NN

Λ4
χSB

k2

r3/2
c

+positive powers of rc. (3.1)

Note that the expansion of the short-distance wave functions as a function of the NN system energy
E = k2/M [13] shows that this is an expansion in k2.

Eq. (3.1) implies that two contact interactions—one a constant and one proportional to E—are
needed for renormalization at this order. (The fact that the contact interactions must themselves
be sandwiched between |ψ(0)〉’s does not alter this conclusion.) In S-waves this is the same result
as found by naive dimensional analysis, although the scaling of the contact operators turns out to
be different. The real difference occurs in P-waves, where the r2 behavior of plane waves at short
distances which would be assumed in NDA is replaced by r3/4 dependence because of the singular
LO potential. Therefore two contact interactions are also needed to renormalize V (3)

2π
in P-waves,

and, indeed, in any partial wave where V1π is attractive and sufficiently strong to warrant iteration.
One channel where we know non-perturbative effects are present, but V1π is not strong, is the

1S0. The tensor part of V1π plays no role there. In consequence, all indications are that one-pion
exchange can be treated as a perturbation in this channel [28, 29, 9, 38]. In χEFT the unnaturally
large scattering length, a, in this channel results from fine-tuning of the contact interaction to be
O(P−1). This produces a LO wave function that behaves as a/r at short distances. Matrix elements
of higher-order pieces of the chiral potential are then highly divergent [39, 40, 41, 42]. The sub-
leading contact terms C1S0

2 k2, C1S0
4 k4, etc. must be enhanced compared to their NDA order to

absorb these divergences. The resulting power counting is very similar to that of the “pionless
EFT" [28, 43, 44, 45], but long-distance corrections due to pion exchanges are included in χEFT.
Since the 3S1 also has a large (c.f. 1/mπ ) scattering length there is a similar, but not identical,
enhancement of sub-leading contact interactions there [46].
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4. Results

The formal outcome of this kind of RG analysis was summarized by Birse at the last Chiral
Dynamics meeting [12, 46]. I reproduce his table below. The progress since 2009 has largely been
in implementing this understanding of how the different pieces of the χEFT V should be ordered
in calculations, and comparing the results with data. We now turn our attention to highlights from
those investigations. More details can be found in the original papers [40, 41, 47, 48, 42] and in
the contributions of Long and Pavon Valderrama to this meeting [49, 50].

P−1 V1π , C3S1, C1S0

P−1/2 C3P0, C3P2

P0 C1S0
2

P1/2 C3S1
2

P3/2 C3P0
2 , C3P2

2

P2 Renormalized “leading" two-pion exchange V (2)
2π

, C1P1, C3P1. C1S0
4 , Cε1

P5/2 C3S1
4

P3 Renormalized “sub-leading" two-pion exchange, V (3)
2π

Table 1: Order of different pieces of the potential V in χEFT, if ΛNN is identified as a low-energy scale.
Adapted from Ref. [46].

Turning first to the controversial P-waves, Fig. 4 displays results from Ref. [41]. The bands
are generated by varying the cutoff rc between 0.6 and 0.9 fm, with the light-blue band obtained
by solving the Schrödinger equation with the NNLO χPT potential. The large width of that band
shows that the lack of renormalization displayed at LO in Ref. [11] persists at NNLO, especially in
the 3P2 phase shift. In contrast, the “new leading order" discussed in Sec. 2 is given by the green
band, and is stable with respect to rc. The red and dark blue bands are generated via a perturbative
treatment of, respectively, the leading (from V (2)) and sub-leading (from V (3)), two-pion-exchange
corrections. Results are not completely stable with respect to rc, but the analysis of Sec. 3 suggests
they will not be, until another contact interaction is added to the calculation.

I will not display results for the 3S1-3D1 channel here. Suffice to say, even though here the new
LO is the same as the LO defined by Eq. (1.2) and (1.1), higher-order corrections in the “new" and
“standard" χEFT expansion behave rather differently. As for the 3P2-3F2 channel, a perturbative
treatment of V (2)

2π
and V (3)

2π
yields results that are quite stable over a significant range of rc. A

non-perturbative solution of the Schrödinger equation with V summed up to V (3) does not.
The other prominent NN channel where the “standard" χEFT prescription of inserting V into

the Schrödinger equation does not lead to stable results in this range of rc is the 1S0. As discussed
in Sec. 3, and demonstrated numerically in Refs. [39, 40, 41, 42], additional 1S0 contact terms
are needed in order to yield stable results beyond LO. Fig. 5 shows a calculation from Ref. [42],
organized according to the power counting shown in Table 4. Good agreement is found at O(P2).

5. Omissions and Outlook

Recent progress in χEFT for the NN system has been significant. The systematic inclusion of
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Figure 4: Phase shifts in different NN P-wave channels as a function of lab energy. The bands indicate
the variation in phase shifts with variation in the cutoff rc at different orders in the perturbative expansion
discussed here. The black line can be taken as a parameterization of experimental data. The light-blue shaded
region shows the result obtained with the NNLO χPT potential [3] in the “Weinberg" power counting usually
used in χEFT calculations. Taken from Ref. [41]. Used with permission.

Figure 5: Phase shifts in the 1S0 channel with perturbative treatment of higher-order effects at O(P−1)
(green band), O(P1) (light blue band), and O(P2) (dashed, dotted, and dot-dashed lines). In each case the
momentum-space cutoff is varied between 0.5–2 GeV. The red dots are from the Nijmegen PWA. Taken
from Ref. [42]. Used with permission.
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perturbative corrections to the “new leading order" of Ref. [11] is leading to results that maintain
renormalization-group invariance over a wide range of cutoffs, and achieve good agreement with
data at O(P3) relative to leading.

Nevertheless, unresolved issues remain. There is disagreement about the power counting of
short-distance operators in partial waves where one-pion exchange is repulsive, e.g. the 3P1. It is
also, as yet, unclear how many contact terms are needed to stabilize the 3P2-3F2 partial wave at
a given order in the expansion. Meanwhile, some authors (e.g. Refs. [11, 41]) treat one-pion ex-
change non-perturbatively in D-waves, leading to even more marked differences with the standard
χPT counting than in P-waves. Whether such a treatment is necessary is unclear, as the D-wave
phase shifts are quite small, and a perturbative treatment of the χPT NN potential yields moderately
good agreement with data [30]. Another point warranting further research is the extent to which
the fine tuning in the 3S1 channel affects contact operators there. Birse argues that it enhances 3S1

operators further over the order given by the analysis in Sec. 3 [12, 46]. But, e.g., Pavon Valder-
ramma does not include this additional enhancement in his analysis, and still manages to describe
the 3S1-3D1 phase shifts well over a wide range of cutoffs [40]. Finally, there is the question of
what is leading order: O(P−1), O(P−1/2), O(P0)? This last may seem an academic question, but
it is actually critically connected to our understanding of what physics drives the non-perturbative
nature of the NN system. Is it the tensor one-pion exchange, a fine-tuned contact interaction, or
something else?

Since I am confessing my sins of omission I add that this contribution did not have space to
do justice to all recent work on the NN system in χEFT. Particularly notable is Aldaladejo and
Oller application of N/D methods in order to remove the right-hand cut, which allows them to
power count an object with only left-hand cuts [51]. Gasparyan et al. are also marrying χPT and
dispersion relations in order to attack the NN problem [52]. And Szpigel and Timoteo have applied
subtractive renormalization in the 1S0 and proposed a power counting different to both the standard
one and that of Table 4 [53]. More generally, the bibliography I provide is, of necessity, partial—in
both senses of the word. I apologize in advance to those whose work is not represented, but this is
a conference proceeding, not a review paper, and my goal was to provide sufficient references to
permit interested parties to trace ideas and details back to original papers.

I see the work described here as releasing the few-nucleon portion of the “Chiral Dynamics"
community from the state of double-mindedness [54] in which it has existed for the last two meet-
ings in this series. At both these meetings we knew that the χPT expansion for the nuclear force
worked well, but also knew that the way it was being applied did not constitute a properly renor-
malized EFT. In the last three years significant work by a talented group of young researchers has
shown that there is a χEFT expansion for the NN force which is (a) perturbative for all correc-
tions beyond leading order; (b) demonstrably renormalization-group invariant over a wide range of
cutoffs at each order; and (c) provides a good description of NN phase shifts. It is my hope and
expectation that future work on χEFT in the NN system will resolve the remaining technical issues
surrounding this new χEFT expansion, and also assess the extent to which the inclusion of the
∆(1232) as an explicit degree of freedom improves the description of NN data and the convergence
of the theory. The resulting, truly systematic, picture of chiral dynamics will have implications for
three-nucleon forces and electroweak operators, and these will have to be teased out. Only then
will the successes listed in the Introduction and the beautiful results presented at this conference
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on, e.g. isospin violation in πd [55], threshold M1 capture [56], weak capture in deuterium [24],
and magnetic moments of light nuclei [22] stand on a completely firm EFT foundation. The tools
to build that foundation are now well understood, and its construction need not mar the notable
phenomenological success of χEFT for few-nucleon systems.
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