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QCD and chiral perturbation theory are the most powerful theoretical tools we have at our disposal
to make this connection. These tools share a symbiotic relationship as chiral perturbation theory
is used to understand the light quark mass dependence of observables, while lattice QCD is used
to determine the values of the unknown operator coefficients appearing in the chiral Lagrangian.
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After three decades of intense effort, lattice QCD (LQCD) has emerged as a robust tool for
precisely computing basic low-energy QCD observables. This development is due to the ever
increasing computing power (see eg. [1]), and at least as important, the constant development
of new computing algorithms (see eg. [2]). One of the main achievements realized in the last
few years is our ability to perform LQCD calculations with the up and down quark masses at or
near their physical values. This heralds a new era in which LQCD will be a principle means of
quantitatively understanding low-energy chiral dynamics.

The approximate chiral symmetry of QCD for the light quarks plays a central role in our un-
derstanding of hadronic and nuclear physics. This approximate symmetry is exploited to construct
Chiral Perturbation Theory (χPT) [3], which is the low-energy effective field theory [4] of QCD,
and describes the soft pion interactions. The properties and interactions of these pseudo-scalars are
encoded in an infinite tower of operators in the chiral Lagrangian. The form of these operators are
constrained by the symmetries of QCD while the operator coefficients (known as the low-energy
constants (LEC)s) are unknown non-perturbative numbers. Despite the non-renormalizable nature
of χPT, it is still a predictive theory as the quantitative relevance of the various operators are dic-
tated by an expansion of the soft pion momentum and the light quark masses suppressed by the
chiral symmetry breaking scale, Λχ ∼ 1 GeV. Thus, hadronic observables can be computed to a
given precision by working to a finite order in the chiral expansion, see eg. the talk of J. Bijnens
at this conference [6]. We are now in the era when LQCD can be used to reliably determine the
value of these LECs, greatly improving our predictive capabilities and allowing for stringent tests
of chiral dynamics and the Standard Model. Computing the basic properties of the pions and kaons
with LQCD has matured to the point that there are now lattice averages for these quantities, see eg.
the talk of L. Lellouch at this conference [7].

While the application of LQCD to properties of the pseudo-scalars has become a precision
science (a few percent theoretical uncertainty), there remain significant challenges for computing
properties of baryons from LQCD. These are challenges we must overcome if we are to ultimately
make a quantitative connection between the fundamental theory of strong interactions, QCD, and
low-energy nuclear physics: the basic properties of the nucleon serve as the first anchor between
QCD and our understanding of nuclear physics. In this talk, I will review the status of our un-
derstanding of properties of baryons from LQCD and χPT. I will focus on properties of single
baryons. For a review of multiple baryon calculations from LQCD, see the talks of W. Detmold [7]
and N. Ishii [7] at this conference and for a good discussion of issues in computing multi-particles
correlation functions, see the talk of J. Dudek [7].

1. Baryons in Lattice QCD

There are two topics I would have liked to cover, but did not for lack of time. The first topic is
LQCD calculations of hadron electromagnetic polarizabilities, discussed by B. Tiburzi [8]. These
quantities are particular sensitive to chiral dynamics and will really put χPT to the test; at LO in
the chiral expansion, the polarizabilities scale as αE ,βM ∼ 1/mπ ∼ 1/√mq, exposing the predicted
non-analytic light quark mass dependence. Further, at present, there is a discrepancy between the
two-loop χPT prediction of the pion polarizabilites and the measured polarizability, see eg. the
talk of D. Lawrence [7]. There are also significant uncertainties in the nucleon polarizabilities,
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particularly that of the neutron (for a recent review, see [9]), and as I will discuss at the end of
my talk, the uncertainty of iso-vector nucleon magnetic polarizability is currently the dominant
uncertainty in determining the electromagnetic self-energy contribution to mp−mn [10]. For these
reasons there are several efforts to compute hadron polarizabilities from LQCD, see eg. [11].

The second topic I would have liked to discuss are the scalar quark matrix elements of the
nucleon, mq 〈N|q̄q|N〉; discussed at this conference by J. Martin-Camalich [12]. These matrix ele-
ments are important for understanding spin-independent direct dark matter searches [13], yet they
are challenging to determine experimentally. LQCD is a perfect tool for this problem, and the status
of such calculations was reviewed at the most recent Lattice Field Theory Symposium [14]. There
is only one lattice calculation so far with control of all the systematics in the calculations [15], but
still with larger than desired uncertainties. A lattice average of ms 〈N|s̄ s|N〉was recently performed
finding reassuring agreement between several different lattice calculations, but also a smaller value
than previously thought [16].

1.1 Nucleon matrix elements

I begin this topic by referring to the talk of D. Renner [7]; I agree with his conclusions which
I paraphrase "For baryon matrix elements, lattice calculations currently lack sufficient study of
systematic effects: finite volume, excited state contamination, continuum limit, ... Apparent con-
flicts with experimental measurements are not justified and apparent conflicts with χPT are not
compelling either". If we do not take these cautions seriously, then we are forced to ask Is there
something wrong with QCD? or Is there something wrong with our LQCD calculations?

1.1.1 The nucleon axial charge and other nucleon matrix elements

The nucleon axial charge, gA, has proven particularly challenging to reproduce with LQCD
calculations. In 2005, a promising calculation of gA was performed with the lightest pion mass of
mπ ∼ 300 MeV and a chiral extrapolation that agreed with the experimental value [17]. However,
more recent calculations with lighter pion masses are all further from the experimental value, in
disagreement with the chiral extrapolation of LHPC [17], see Figure 1.

One notices an absence of significant pion mass dependence. There is clearly some cancelation
between different orders in the chiral expansion, but how severe is the cancelation? In the large
Nc expansion, the axial coupling to the nucleon scales as Nc. It turns out, the one-loop corrections
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Figure 1: Left figure from LHPC [17]. Right figure, summary of lattice results from Dru Renner [7].
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Figure 2: Lattice calculations (courtesy of Dru Renner [7]) with cuts finite volume cuts applied.

to gA are suppressed in the large Nc expansion [18] and so the size of the higher order chiral
corrections are not as large as one would otherwise guess. The cancellation is only apparent when
one explicitly includes the delta degrees of freedom [19]; baryon χPT calculations which do not
explicitly include the delta degrees of freedom will miss these and other important quantitative
effects and result in unnatural value for LECs.

In the light pion mass region (defined here as mπ . 300 MeV) the calculated values of gA tend
to decrease while the physical value is larger than the computed values. This has caused some
alarm [20]. A rule of thumb that is often invoked is that mπL≥ 4 for confidence that finite volume
modifications are a few percent or less. If we simply apply this cut to the lattice results for gA, we
arrive at the left figure in Figure 2. With baryons, there are reasons to believe mπL ≥ 5 may be
needed. Applying these cuts removes the apparent discrepancy with the experimental value, but
unfortunately also removes most of the numerical results.

As an example, I display two figures from Ref. [21], which computed the single hadron spec-
trum at mπ ∼ 390 MeV, Figure 3. The left figure displays the computed nucleon mass (in lattice
units) on four different volumes. From left to right (largest to smallest) these volumes satisfy
mπL' {7.7,5.8,4.8,3.9}. Only the largest two volumes have negligible finite volume corrections
and with mπL ' 3.9 we observed a 2.5% correction, which is more significant than expectations
based purely on baryon χPT [22]. In the large volume limit, the finite volume corrections are
approximated by (ignoring explicit ∆ loops)

∆mFV
N =

3πg2
Am3

π

(4π fπ)2 ∑
~n6=0

e−|~n|mπ L

|~n|mπL
, (1.1)

(with fπ ' 131 MeV at the physical pion mass). For fixed mπL, the volume corrections are pre-
dicted to scale roughly as m3

π . The right plot of Figure 3 displays the estimated volume dependence
for different pion masses. Similarly, the volume corrections for gA are approximately

∆gFV
A =−gA

m2
π

(4π fπ)2 ∑
~n6=0

e−|~n|mπ L
√

π

2|~n|mπL

(
8+6g2

A
|~n|mπL

− 16g2
A

3

)
: (1.2)

for fixed mπL, they are expected to scale roughly as m2
π . Care must be taken when assessing the

expected importance of finite volume corrections. Often cuts are made based on mπL, but this can
be too simplistic as the corrections also have non-negligible pion mass dependence.
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Figure 3: Finite volume dependence of the nucleon from Ref. [21].

Finite volume corrections are one of a few systematics that we must control in LQCD calcula-
tions. Other systematics are: the chiral extrapolation, the continuum extrapolation, renormalization
when necessary, and contamination from excited states. The chiral, volume and continuum system-
atics have been most thoroughly explored in lattice calculations. Many groups are now focussing
on exploring the contamination from excited states. Here, I highlight two different approaches,
displayed in Figure 4. The matrix elements are typically constructed with three-point functions

C3pt(t, t ′) = ∑
~x

∑
~y

e−i~p·~xei~q·~y〈0|H(~x, t)Og(~y, t ′)H†(~0,0)|0〉 (1.3)

where H†(~x, t) creates hadrons with given quantum numbers, the operator Og(~y, t ′) is related to
the matrix element g of interest and the Fourier transforms project onto definite momentum. For
matrix element calculations, using the “standard ratio" method, where the sink time t is fixed while
t ′ is varried, one can show expected contamination from excited states is given approximately as

R(t) = g+δZe−δE t + . . . (1.4)

where t is the time separation between the source and sink with the operator insertion time chosen as
t ′ = t/2, g is the value of the matrix element of the state of interest, δZ is related to ratios of overlap
factors of the interpolating fields onto the state of interest and the excited state and δE = Eexc−E0

is the gap between the state of interest and the first excited state. In [24], the heavy-hadron axial
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Figure 4: Two techniques for controlling excited state contamination: [24] (left) and [25] (right).
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couplings were computed for several values of the source-sink separation time and extrapolated to
infinite separation using Eq. (1.4); the results are displayed in the left plot of Figure 4.

Another method being studied is the "open sink" method [25] where the operator insertion
time t ′ is fixed and the sink time t is left free, Eq. (1.3). In the right panel of Figure 4, this method
is applied to the iso-vector momentum fraction 〈x〉u−d in the nucleon. Again, one observes clear
contamination from excited states affecting the “standard ratio" method, which are quantified and
removed with this new technique. These methods have not resolved the nucleon gA puzzle.

Another promising technique [26] has very recently been utilized in computations of the nu-
cleon electromagnetic form factors. The calculation was performed by LHP [27] with a lattice
spacing of a ∼ 0.116 fm, a spatial volume of L ∼ 4.3 fm and excitingly a pion mass very near its
physical value, mπ ' 150 MeV. What is particularly exciting about the results is that for the first
time, the resulting form factors are in remarkable agreement with the experimentally measured
form factors. Figure 5 displays the resulting lattice calculations for the F1(Q2) (left) and F2(Q2)

(right) elastic iso-vector nucleon form factors (green points). Additionally, the Kelly parameteriza-
tion of the experimentally measure form factors is displayed as the solid (red) curve. Unfortunately,
this method did not resolve the gA puzzle.

In my opinion, the most promising approach for computing these and other matrix elements is
to use a variational method. With this approach, one constructs a basis of interpolating fields that
are diagonalized to project onto the various eigenstates of QCD. This technique has been applied
very successfully to the ground and excited state spectrum of QCD, see for eg. the talk of J. Dudek
at this conference [7]. The success arises partly because the variational diagonalization of the
interpolating fields allows for an extraction of the matrix elements much earlier in Euclidean time
before the signal-to-noise has decayed. See Ref. [28] for an example of this method applied to a
calculation of gA. It was found excited states can systematically suppress the computed value by as
much as 12%.

1.2 Light quark mass dependence of the nucleon (and other baryons)

I would like to transition to a discussion of the ground state baryon spectrum and some un-
resolved puzzles concerning their light quark mass dependence. In 2008, the Budapest-Marseille-
Wuppertal Collaboration presented results of the ground state hadron spectrum (subsequently pub-
lished in Science [29]) composed of u,d and s quarks at the XXVI International Symposium on
Lattice Field Theory, held up the road in Williamsburg. For the first time, all systematics were
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Figure 5: Calculation of Dirac and Pauli form factors of the nucleon with nearly physical pion masses [27].
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Figure 6: Ground state hadron spectrum calculation and sample chiral extrapolation of Ref. [29].

sufficiently controlled so as to make a meaningful quantitative comparison with the spectrum of
nature: the calculations were performed with mπ & 185 MeV, three lattice spacings and relatively
large volumes, resulting in extrapolated results that agree with the experimental (isospin averaged)
masses within a few percent, see Figure 6. This was an exciting development that took at least
some of us by surprise.

At the same conference, an interesting puzzle concerning the light quark mass dependence of
the nucleon [30] was brought to light; in all LQCD calculations with dynamical light and strange
quarks (including [29]), the nucleon mass displays a remarkably linear dependence on the pion
mass [31], now known as the ruler approximation. The lattice results are also consistent with
a fit to the baryon χPT formula, albeit with large cancelations between different orders in the
chiral expansion, see Refs. [30, 31] for more details. A detailed SU(2) baryon χPT analysis led
to the conclusion that the perturbative expansion for the nucleon mass converges only in the range
mπ . 350 MeV, a conclusion first made in Ref. [32]. The resulting extrapolations gave

mN =

{
941±42±17 MeV, NNLO SU(2) baryon χPT
938±9 MeV, mN = α0 +α1mπ (ruler approximation)

. (1.5)

What is the status now? In Figure 7, the ruler approximation of Refs. [30, 31] is displayed in
the left panel. The physical value (red-star) is not included in the fit. The x-axis has been scaled by
2
√

2π f0' 1083 MeV such that it is approximately the dimensionless expansion parameter relevant
for baryon χPT. In the right panel, the most recent results from RBC-UKQCD (unpublished) as
well as those from χQCD [33] are overlayed on the original LHP results. The linear pion mass
dependence is observed to persist in the LQCD results over the range 170 . mπ . 760 MeV! There
is now further compelling evidence that this unexpected pion mass dependence is a feature of QCD
and not an artifact from the lattice. At this time, we have no good idea of why this linear pion mass
dependence arises. But if we take it seriously, then the pion-nucleon sigma term would be

σπN = ml〈N|q̄lql|N〉= ml
∂

∂ml
mN(ml) = 67±5 MeV , ruler approximation . (1.6)

Recall, the sigma term is important for understanding the potential cross section of Dark Matter
with a nucleus [12]. If σπN is determined from fits to the nucleon mass from lattice QCD, one must
be much more careful to account for finite volume and other systematic corrections, as this matrix
element is determined from a derivative.
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At NLO in χPT, the nucleon mass is given by (ignoring the deltas)

mN = M0 +σNm2
π −

3πg2
A

(4π fπ)2 m3
π +O(m4

π) , (1.7)

where σNm2
π is the leading contribution to σπN . The leading non-analytic light quark mass depen-

dence to the nucleon mass is a prediction (if you take gA and fπ from either phenomenology or
LQCD calculations). It would have been great (comforting, reassuring) if we were able to observe
this non-analytic light quark mass dependence directly from LQCD calculations of mN . However,
if one fits the χPT expression to the LQCD results, with gA as a free parameter, the resulting value
of gA is quite small and inconsistent with the physical value. In hindsight, this is rather obvious:
given the observed pion mass dependence of the nucleon mass, there is no support for a contri-
bution which scales as (−m3

π). A fit using a value of gA from either nature or lattice QCD must
include the O(m4

π) terms for stability if extended to the range mπ ∼ 300 MeV.
There have been a few attempts to understand the chiral behavior of mN , for a recent example,

see [34]. One, which I did not have time to discuss was work by M. Alberg and G. Miller [35]; using
measured form-factors of the nucleon, the pion mass dependence of the nucleon was estimated by
working on the light-front. A nearly linear dependence on the pion mass was found in the range
where LQCD results exist. Other attempts to understand the light quark mass dependence were
motivated by the large-Nc expansion. In a first study [36], a comparison of the LQCD results of
[30] were compared with the predicted scaling in 1/Nc and SU(3) breaking, finding the predicted
behavior [37] was satisfied for a large range of light quark masses with fixed strange quark mass.
The combined large Nc and SU(3) expansions predict certain linear combinations of the octet and
decuplet baryon masses scale with definite powers of N−1

c and ms−ml . A follow up study [38]
focussed on three linear combinations and the Gell-Mann–Okubo (GMO) relation

mass relation scaling
M1 = 25(2mN +mΛ +3mΣ +2mΞ)−4(4m∆ +3mΣ∗+2mΞ∗+mΩ) Nc× (ms−ml)

0

M3 = 5(6mN +mΛ−3mΣ−4mΞ)−2(2m∆−mΞ∗−mΩ) N0
c × (ms−ml)

M4 = mN +mΛ−3mΣ +mΞ N−1
c × (ms−ml)

∆GMO = 3
4 mΛ + 1

4 mΣ− 1
2 mN− 1

2 mΞ N−1
c × (ms−ml)

3/2

(1.8)
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The most interesting result was that an SU(3) baryon χPT fit to M3 and M4 returned values of the
axial couplings consistent with phenomenology and direct LQCD calculations [39],

D = 0.75(5) , F = 0.47(3) , C =−1.4(1) , H =−2.1(2) , (1.9)

indirect evidence of non-analytic light quark mass dependence in the baryon spectrum. Further, it
was demonstrated that only the NNLO SU(3) χPT formula was consistent with the LQCD results
of the GMO relation. This gives further evidence of non-analytic light quark mass dependence,
as the leading contribution to the GMO relation is from non-analytic chiral loops. The work was
not definitive as there are known systematics which were not addressed. Notably, the LQCD cal-
culations were mixed-action with domain-wall valence quarks on the rooted-staggered MILC sea
quark configurations, but the relevant mixed-action χPT [40] was not used: the results exist at only
a single lattice spacing: volume corrections which are known to be more important for mass split-
tings [21] were not addressed. Despite these and other systematics, I want to stress the importance
of finding baryon spectrum results consistent with values of the axial couplings known from both
phenomenology and LQCD.

There has been additional interesting work comparing SU(3) baryon χPT with LQCD results
of the octet and decuplet spectrum. There is compelling evidence that SU(3) baryon χPT is a non-
converging expansion [30, 41].1 However, in Refs. [42], reported by M. Lutz here at CD12, SU(3)
χPT was used to fit the results of several different and independent LQCD calculations of the spec-
trum. The most striking result is a consistent fit among all the LQCD results was found. Further,
the results were fit to a subset of the results, and then used to reasonably correctly “predict" the
results of other calculations, in some cases with very different values of the light and strange quark
mass. It is difficult to understand how this non-convergent expansion is used to so successfully
describe all these different LQCD results. There is something interesting to be learned from this. It
is worth noting, these findings have been independently confirmed by other groups as well [43].2

The last work I would like to bring attention to is that of T. DeGrand who has been single
handedly computing the baryon spectrum at different values of Nc = 3,5,7, so far with quenched
LQCD. Good agreement between expected scaling with Nc is found in the spectrum, including the
splitting between different spin multiplets [45].

The advantage of considering the combined large Nc and chiral expansions is both one of utility
as well as one of formality. The utility is that the large Nc expansion, while not quantitative on its
own, teaches us to ask better questions of our hadronic observables. An example I gave above is
considering not just the baryon spectrum, but linear combinations which scale with different powers
of 1/Nc. In this way, a marginally convergent expansion can be improved with added factors of
1/Nc, leading hopefully to quantitative improvements in our understanding. There has been much
debate in the literature on the “correctness" of explicitly including the delta (decuplet) degrees of
freedom in the low-energy effective field theory, see eg. previous Chiral Dynamics Workshops. If
one also incorporates the large Nc expansion into χPT, this ambiguity is removed; in the limNc→∞,
the nucleon and delta become degenerate. This allows for a rigorous field-theoretic inclusion of

1Refs. [30, 38] explored the combined large Nc-SU(3) baryon expansion which has better convergence behavior.
2Another interesting method I did not have time to discuss is the new approach by the QCDSF Collaboration which

varies the light and strange quark masses with the constraint mu +md +ms = fixed [44].
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these important degrees of freed in the Lagrangian. Moreover, these large Nc arguments help us
understand certain phenomena which are only explicitly apparent when one explicitly includes the
delta such as the nearly negligible pion mass dependence of gA [18] or the very small violations
of the baryon GMO relation [46]. It is worth extending our understanding of these combined
expansions and performing detailed comparisons with LQCD results.

2. Baryons and Lattice QCD

A topic I have been particularly interested in is understanding the neutron-proton mass splitting
from first principles. As in my talk, I do not have enough room/time to discuss this topic in the
detail I would like. So here, I present a brief summary.

The neutron-proton mass splitting is known very precisely [47]

mn−mp = 1.29333217(42) MeV , (2.1)

yet our understanding of the separate electromagnetic and strong isospin breaking contributions
is less than satisfactory. This mass splitting plays a very significant role for example in Big
Bang Nucleosynthesis (BBN): the initial ratio of neutrons to protons in the primordial universe is
Xn/Xp = exp{−(mn−mp)/T}; the neutron lifetime is very sensitive to the mass splitting, changing
approximately 100% for a 10% change in mn−mp. For these reasons, among others, it is desirable
to understand this important quantity from the fundamental theory.

At LO in isospin breaking, mn−mp can be cleanly split into two pieces

mn−mp = δMγ

n−p +δMmd−mu
n−p . (2.2)

However, the quark mass operators are needed to renormalize the electromagnetic self-energy [48]
and so these contributions mix at higher orders. Lattice QCD is a perfect tool to compute δMmd−mu

n−p ,
for which there are a few existing results [49]. Computing the electromagnetic contribution is
much more challenging with LQCD due to the disparate length scales relevant for QCD and QED.
With C. Carlson and G. Miller, I revisited the Cottingham [50] formulation of determining the
electromagnetic self-energy using dispersion relations to relate the measure Compton cross sec-
tions to the self-energy [10]. This work uncovered a technical oversight in work of Gasser and
Leutwyler [51] related to a subtracted dispersion integral, which unfortunately invalidates their
result. After properly accounting for the subtraction function, the electromagnetic self-energy con-
tribution to mn−mp can be broken into four pieces

δMγ

p−n = δMel +δMinel +δMsub +δM̃ct . (2.3)

One can show the residual counterterm contribution (after renormalization) is numerically second
order in isospin breaking and can be neglected [48], |δM̃ct | . 0.02 MeV [10]. The elastic (δMel)
and inelastic (δMinel) contributions can be precisely computed, but the unknown subtraction func-
tion presents challenges. The limQ2→∞ behavior of the subtraction function can be shown to scale
as 1/Q2 [48] while the low-energy limit can be constrained with effective field theory [52]. Intro-
ducing a form factor to connect the low and high Q2 regions, the unknown subtraction function can
be modeled as

δMsub
inel '

−3β
p−n
M

8π

∫
Λ2

0
dQ2Q2

(
m2

0

m2
0 +Q2

)2

, (2.4)
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where m0 can be taken as a typical dipole mass and β
p−n
M is the isovector magnetic polarizability.

Unfortunately, this polarizability is presently unknown at the 100% level [9], and so at best we can
estimate this contribution; δMsub

inel = 0.47±0.47 MeV. Putting all the contributions together,

δMγ

n−p =−1.30±0.03±0.47 MeV , (2.5)

where the first uncertainty is from the elastic and inelastic contributions and the second, from the
unknown subtraction function. This value is in good agreement with expectations from combining
LQCD [49] and experiment [47], which would lead one to predict δMγ

n−p = −1.42(15) MeV.
LQCD calculations of the isovector magnetic polarizability will improve this prediction, and allow
for a more meaningful comparison with other lattice results and more importantly, with nature.

3. Conclusions

This is a particularly exciting time. Lattice QCD calculations are now being performed with
light quark masses at or near their physical values, opening a new opportunity to constrain χPT
and determine the LECs appearing in the chiral expansion. In the last five years, we have witnessed
the utility of LQCD in constraining High Energy Physics phenomenology to improve our under-
standing of the Standard Model and aid in the search for new physics. There is now a working
group tasked with computing lattice averages of basic quantities of interest for light quark meson
physics [53]. In the next five years, we will see LQCD results transform our understanding of low
energy Chiral Dynamics by solidifying the connection between nuclear physics and QCD. Hope-
fully, along the way, we will uncover and solve new puzzles, beginning with an understanding of
the nucleon.
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