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One of the major scientific challenges in fundamental physics consists of understanding the
strong interactions and the nuclear structure phenomena, directly from QCD. The low-energy struc-
ture of the nucleons and other baryons, and their interaction with the Goldstone bosons of chiral
symmetry (pions, kaons and eta’s), turns out to be an essential ingredient of this program. This is,
in fact, a topic much revitalized in recent years, mainly dueto the remarkable progress made by
the lattice QCD (LQCD) community on the calculation of key observables [1]. This is being facil-
itated, at the same time, by the emergence of modern effective field theory approaches, based on
baryon chiral perturbation theory (BχPT), which allow to clear the LQCD simulations from some
systematics and check them against the experimental data, or to process efficiently the information
generated to provide reliable predictions. On the other hand, investigations involving accurate de-
terminations of baryonic observables (such as the proton electric radius or the sigma term) have
become part of the modern “new-physics rush”, and interest in this direction is rapidly spreading
across the field.

In this contribution I will present a snapshot of the improvements in BχPT by reporting the
progress recently made on the understanding of the nucleon sigma terms andπN scattering. These
observables can be studied using eitherSU(2) or SU(3) settings and can be extracted from ex-
perimental data onπN scattering and the baryon-octet mass splittings or LQCD results on the
lowest-lying baryon spectrum. Therefore, they represent aperfect example to study the potential
and limitations of BχPT for processing and correlating all this information in a model-independent
and systematic manner. Moreover, the sigma terms epitomizethe type of baryonic observables
with high physics interest, containing information on the origin of the mass of the ordinary matter
as well as becoming the main uncertainty in the constraints derived from direct searches of dark
matter [2].

One customarily introduces two independent observables,σπN andσs, which are known as
the pion-nucleon and nucleon strangeness sigma terms. These are defined in the isospin limit
(mu = md ≡ m̂) as

σπN = 〈N|m̂
(

ūu+ d̄d
)

|N〉,
σs = 〈N|mss̄s|N〉. (1)

and contain information on the contribution of the quark-condensate to the masses of the baryons
and parametrize the flavour-structure of the nucleon scalarform factors att = 0. Theσs is of
particular significance as it contains information on the virtual ss̄ pairs and their contribution to
the nucleon mass. In the following we will briefly review the state-of-the-art in BχPT and, then,
report recent determinations of these matrix elements using this approach in combination with
experimental data or LQCD results.

1. Power Counting and decuplet resonances in BχPT

Unlike in the meson sector, in BχPT the power counting (PC) is violated by the presence
of MN as a heavy scale and the baryonic loop diagrams do not fulfill the chiral order prescribed
by their topology [3]. A crucial observation follows from noticing that this naive PC arises from
considering the nucleons in a non-relativistic expansion,which eventually can be implemented
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from the outset using heavy-baryon (HB)χPT [4]. The HB is an elegant formalism with a neat
PC, but it alters the analytic structure of the baryon propagators. This has been argued to be the
reason behind the problematic convergence showed by the HB expansion in some observables,
motivating the study and emergence of Lorentz covariant approaches. An important development
in this sense comes from realizing that the genuine non-analytical chiral corrections in a covariant
formalism verify the PC and are identical to those obtained in the HB expansion. The PC-breaking
pieces, on the other hand, are analytic and can be eventuallyabsorbed into the local counterterms
or low energy constants (LECs) in some (renormalization) prescription [5, 6]. There are two main
covariant approaches, the infrared (IR) [5] and the extended-on-mass-shell (EOMS) scheme [6].
The former one, however, introduces unphysical cuts that can disrupt the chiral expansion. The
EOMS scheme, on the other hand, is nothing else than conventional dimensional regularization in
which the finite parts of the counter-terms are adjusted to cancel the PC-breaking pieces. In this
way, it recovers the PC at the same as it does not change the analytic structure dictated byS-matrix
theory.

Another difficulty in BχPT is the treatment of the lowest-lying decuplet resonances. In the
conventional approach, these resonances and other heavierdegrees of freedom are integrated out
and accounted for by the LECs. This is a valid prescription aslong as the energies probed in the
theory are well below the mass gap of these states with respect to the ground state octet baryons,
or MN . However, in case of the decuplet resonances like the∆(1232), the mass gap is only of
δ ∼ M∆ −MN ∼ 300 MeV and, moreover, this resonance couples strongly to the πN system. In
a SU(3)-BχPT approach, the size of the perturbative parameter,∼ MK/ΛχSB is even larger than
this typical scaleδ/ΛχSB. Therefore, it becomes necessary to properly take the∆(1232) and other
decuplet resonances into account as explicit degrees of freedom. In order to do so, one needs to
define a suitable PC for the new scaleδ [7, 8], and also to tackle theconsistency problem that
afflicts interacting spin-3/2 theories (see Ref. [9] and references therein). Once these two issues
are solved, one can apply any of the formalisms to cure the power counting problem and explicitly
calculate their contributions to low-energy baryon structure.

2. Experimental determinations of the sigma terms

2.1 The πN scattering amplitude and σπN

The elastic scattering of pions and nucleons probes their scalar vertices, and this is formalized
in the nucleon case by the Cheng-Dashen theorem connectingσπN to the isospin-even scalar scatter-
ing amplitude at the kinematical point(s= m2

N , t = 2M2
π), which lies in the unphysical region of the

process. The traditional extrapolation is done using an energy-dependent parameterization of the
data in partial waves (PW) supplemented by dispersion relations that impose strong analyticity and
unitarity constraints onto the scattering amplitude at lowenergies. There are two “classic” determi-
nations ofσπN , the one based on the Karlsruhe-Helsinki (KH) group,σπN ≃ 45(8) MeV [10, 11],
and the other performed by the George-Washington (GW) group, σπN = 64(7) MeV [12, 13].
Although the difference between these two determinations is not too large, it leads to radically
different interpretations of the strangeness content in the nucleon, as we will see below. Besides,
a substantial reduction of the∼ 30 MeV uncertainty involved by these two determinations would
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increase the significance of the constraints set on the parameter space of models from the experi-
mental bounds on the dark-matter nucleon cross sections.

In order to understand some of the systematic effects, one would wish to complement the dis-
persive treatments with BχPT. Ideally, one would even dream of performing a completelymodel-
independent analysis of the scattering data leading to a systematic study of the subthreshold region,
σπN and all other related quantities without any further input.However these studies have faced
important difficulties. The classical works of Fettes etal. in HB atO(p3) [14] andO(p4) [15] were
able to reproduce theS- andP-wave phase shifts in the threshold region, but they didn’t succeed
to give a realistic description of the subthreshold region and, consequently, they overestimated the
value of the sigma-term. They concluded that an order-by-order improvement in the extrapolation
onto the subthreshold region was far from obvious [15]. The inclusion of the∆ as explicit degree
of freedom in the small-scale-expansion (SSE) (δ ∼ O(p)) allowed to stretch significantly the re-
production of the phase-shifts to larger energies [16]. However, large correlations among the LECs
were reported, with values depending much on the PW analysisused as input. As a result a stable
value ofσπN and extrapolation to the subthreshold region could be only achieved using the Olsson
dispersive sum rules [17]. These problems were corroborated by theO(p4) calculation without
explicit ∆’s done in the IR scheme [18]. In this case, though, an inverseapproach was followed.
The subthreshold description was investigated and the extension into the physical region was then
attempted, without success.

The situation has recently improved with a novel chiral analysis of theπN scattering ampli-
tude introducing two main innovations over previous work. In the first place, a fully covariant
approach in the EOMS scheme is employed [19, 20, 21]. This proves to be not only important
in the extrapolation onto the subthreshold region (in comparison with HB) but also in extending
the framework to higher energies (as the IR scheme becomes sensitive to its unphysical cuts). The
second essential ingredient is the inclusion of the∆(1232) as an explicit degree of freedom in
theδ -counting [8], which exploits the hierarchyMπ < δ < ΛχSB by countingδ asO(p1/2). This
analysis was performed up toO(p3) in this counting, implying that the only explicit∆ contribu-
tions are those stemming from the Born-Term diagrams. The strategy followed in this work was
to determine the different LECs with theS- andP-wave phase shifts provided by the KH, GW and
Matsinos’ [22] groups and then discuss the resulting phenomenology.

The quality of the corresponding fits to the GW PW analysis is shown in Fig. 1 where the phase
shifts are perfectly reproduced up to energies ofW =

√
s ≃ 1.2 GeV. For the sake of comparison,

we also include the result obtained without the explicit∆ contribution, which achieves a good
description of the phase shifts only up to energies slightlyabove threshold.1 In fact, a comparison
between the contributions at different orders shows that only in the former case a good convergence
is obtained up toO(p3) in all the low-energy region.

Once the LECs are determined, one can predict and study differentπN scattering observables
or to investigate the extrapolation onto the subthreshold region. In Table 1 we present the results
for some selected observables, that can be checked to be in good agreement with those reported by
the respective PW analyses. Then, one can see that a BχPT analysis of the phase shifts ratifies the

1The inclusion of the∆ explicitly up to O(p3) in the δ -counting introduces 3 new LECs through the Born-term
diagram. However, one of these parameters can be fixed with the ∆(1232)-resonance width and the other two can be
shown to be redundant [23, 20].
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Figure 1: Chiral analysis of the GW phase shifts (blue points) up toO(p3) in the EOMS scheme without∆
(dashed green line) and with∆ (solid red line) in theδ -counting.

Table 1: Physical observables obtained from theO(p3) πN scattering amplitude in the EOMS renormal-
ization scheme fitted to different PW analyses. We show theπN∆ couplinghA, theπN coupling and cor-
responding Goldberger-Treiman discrepancy∆GT , the scattering lengths, which are given in units of 10−2

M−1
π and the pion-nucleon sigma term, which is given in units of MeV

χ2
d.o.f. hA gπN ∆GT [%] a+0+ a−0+ σπN

KH [10] 0.75 3.02(4) 13.51(10) 4.9(8) −1.2(8) 8.7(2) 43(5)
GW [12] 0.23 2.87(4) 13.15(10) 2.1(8) −0.4(7) 8.2(2) 59(4)
EM [22] 0.11 2.99(2) 13.12(5) 1.9(4) 0.2(3) 7.7(1) 59(2)

discrepancy between different PW analyses, in particular regarding the value ofσπN . A comparison
of the values of some of these observables with the alternative determinations that can be obtained
from other sources like pionic atoms orNN-scattering favors the GW solution. The KH solution
gives rise to a value forhA that is not compatible with the∆(1232) width and to a value forgπN that
leads to a significant violation of the GT relation. As for ourstudy of the EM PW analysis, we found
a value for the isovector scattering length that is too smallas compared with the accurate values
obtained from pion-atoms data [22]. However, the most important observable in the discussion of
σπN concerns the scalar-isoscalar scattering length. While the KH result is compatible with the
old negative values, it is not with the more recent determinations from modern pionic-atom data,
a+0+ = −0.1(1) 10−2M−1

π [24].2 These are, on the other hand, compatible with the scatteringdata
extractions from the GW and EM solutions. Finally, notice that the Matsinos and GW analyses
lead to the sameσπN . This is relevant because these are two completely different analyses that
incorporate the new high quality data collected over the 2 last decades, whereas the KH group
stopped updating theirs in the mid 80’s. With these considerations, we reported the value [19]

σπN = 59(7)MeV, (2.1)

2See Ref. [20] for details.
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BχPT Dispersive

d+
00 (M−1

π ) −1.48(15) −1.46
d+

01 (M−3
π ) 1.21(10) 1.14

d+
10 (M−3

π ) 0.99(14) 1.14(2)
d+

02 (M−5
π ) 0.004(6) 0.036

b+00 (M−3
π ) -5.1(1.7) −3.54(6)

d−
00 (M−2

π ) 1.63(9) 1.53(2)
d−

01 (M−4
π ) -0.112(25) −0.134(5)

d−
10 (M−4

π ) -0.18(5) −0.167(5)
b−00 (M−2

π ) 9.63(30) 10.36(10)

Table 2: Results for different subthreshold coefficients obtained from the fits to the KH analysis and in
BχPT in the EOMS scheme and with explicit∆ contributions up toO(p3) in the δ -counting. The results
obtained using dispersive techniques are included for the sake of comparison.

where the error includes a theoretical uncertainty estimated with the explicit calculation of higher-
order graphs added in quadrature with the one given by the dispersion of the values in the average
of the GW and EM results.

The success of this modern calculation to provide a reliabledetermination ofσπN from phase
shifts can be understood by analyzing the scattering amplitude in the subthreshold region, where it
comes usually characterized by the so-called subthresholdcoefficients stemming from a kinematic
expansion about the points = u= m2

N +M2
π andt = 0. In Table 2 we show the values of these quan-

tities obtained after fitting the LECs to the KH phase shifts compared to those given by dispersive
techniques [20]. As it can be seen, in this approach to BχPT, the long-sought connection between
the physical and subthreshold regions is accomplished. In particular,d+

00 andd+
01 correspond to the

leading orders of the expansion int of the Born-subtracted scalar-isoscalar amplitude and so they
are essential to understand the extrapolation to the Cheng-Dashen point [11] and determination of
σπN . For the details on the discrepancy ond+

02 and its meaning we address the reader to Ref. [20].

2.2 The baryon-octet mass splittings and the strangeness content of the nucleon

The contribution of the strange quark to the nucleon mass canbe related withσπN and the
SU(3)F -breaking of the baryon masses in the octet. Namely, one can re-express the pion-nucleon
sigma term as [25]

σπN =
σ0

1− y
, (2.2)

wherey is the so-called “strangeness content” of the nucleon,

y =
2〈N|s̄s|N〉

〈N|ūu+ d̄d|N〉 =
2m̂σs

msσπN
= 1− σ0

σπN
, (2.3)

and
σ0 = m̂〈N|ūu+ d̄d−2s̄s|N〉. (2.4)

Thus,σ0 can be understood as the value of the pion-nucleon sigma termin case that the strange-
quark contribution to the nucleon wave function is null (Zweig rule). The interest ofσ0 lies on the

6



P
o
S
(
C
D
1
2
)
0
1
8

Applications of BχPT: The nucleon σ -terms J. Martin Camalich

fact that it can be calculated inSU(3)F BχPT up toO(p3) using the experimental baryon-octet
mass splittings. Subsequently, using Eq. 2.2, one can obtain the strangeness content of the nucleon
from a given experimental determination ofσπN .

At LO, σ0 = m̂/(ms − m̂)(MΞ +MΣ −2MN)≃ 27 MeV. The NLO orO(p3) corrections were
first calculated by Gasser in 1982 using an early version of BχPT regularized with phenomeno-
logical form factors, givingσ0 = 35(5) MeV. This result was later bolstered by anO(p4) HB
calculation [26] which obtainedσ0 = 36(7). However, atO(p4) several new unknown LECs con-
tribute and they had to be determined in this calculation using model estimates, or even the value
σπN = 45 MeV as input. Besides, it is known that the HB approach suffers from a problematic con-
vergence inSU(3)-flavor applications [27] (for a recent review see [28]). Nevertheless, and despite
the possible problems in these numerical determinations, they have settled in the field, becoming
an important source of distrust in “relatively large” values of σπN . Indeed, taking the Gasser result
onσ0 with the value ofσπN = 64(8) MeV extracted fromπN scattering data by the GW group, one
obtains a strangeness contribution toMN of about 300 MeV, scenario that is considered implausible.

Table 3: Values ofσ0 for different BχPT approaches.

OctetO(p3) Octet+DecupletO(p3)Tree levelO(p2)
HB Covariant HB-SSE Covariant

σ0 [MeV] 27 58(23) 46(8) 89(23) 58(8)

These calculations were recently revisited in the context of BχPT framed in a covariant frame-
work within the EOMS scheme and considering explicitly the contributions of the decuplet [29],
which were neglected in previous works. The results of this analysis are summarized in Table 3,
where we present those corresponding to the EOMS and HB approaches, with and without decuplet
contributions. The errors are obtained by the explicit computation ofO(p4) diagrams stemming
from theSU(3)-breaking of the baryon masses in theO(p3) diagrams. As we can see, the correc-
tions to the LO result onσ0 studied are large. The HB expansion has severe problems of conver-
gence in the description of the sigma terms atO(p3). Focusing in the following on the covariant
results, we see that considering only the octet contributions the result is reasonably close to the
classical result of Gasser [25], whereas the new contributions given by the decuplet baryons are not
negligible producing a∼10 MeV rise onσ0. In summary, this implies that a pion-nucleon sigma
term of∼ 60 MeV is not at odds with a small strangeness content in the nucleon. In fact, plugging
the result forσπN from πN-scattering reported in the previous section, we obtain

y = 0.02(13). (2.5)

3. Determinations from lattice QCD

A theoretical determination of the sigma terms is accessible through the LQCD simulations.
There are two possible strategies. The most straightforward one consists of directly evaluating
the matrix elements (1) in the lattice. However this is computationally very expensive due to
the evaluation of the contributions of the current coupled to disconnected quark lines, which are
expected to play an important role in the numerical determinations. The second and most widely

7



P
o
S
(
C
D
1
2
)
0
1
8

Applications of BχPT: The nucleon σ -terms J. Martin Camalich

1.2

1.4

1.6

1.8

M
D
 [G

eV
]

0 0.05 0.1 0.15 0.2

mπ
2
 [GeV

2
]

0.8

1

1.2

1.4
M

B
 [G

eV
]

Ω−

Ξ∗

Σ∗

∆

 Ξ
Σ
Λ
N

Figure 2: Extrapolation of the PACS-CS results [39] on the lowest-lying baryon masses within the covariant
formulation ofSU(3)F -BχPT up toO(p3) [31].

used strategy is based on the Hellmann-Feynman theorem which relates the sigma-terms to the
quark-mass derivatives of the nucleon mass. Therefore, onecan obtainσπN andσs by interpolating
the physical nucleon mass with determinations ofMN at different values of quark masses. One
needs enough accurate determinations close to the physicalpoint and the main difficulty lies in
assessing the systematic effects originating from a specific choice of interpolators. In this sense,
it is natural to use BχPT to perform these studies and interpolators based onSU(2) HBχPT up to
O(p3) andO(p4) have become standard in the extrapolations ofMN and determinations ofσπN

performed by the lattice collaborations.

Two main difficulties have been encountered in the development of this program based on
BχPT. First, the extension of the formalism into aSU(3) setup, describing the quark-mass de-
pendence of the masses of all the octet (and decuplet) baryons and giving access toσs, has been
troubled by the problematic convergence of the HB approach in this sector of the theory. Only
after the application of approaches with cut-off regularization prescriptions [30] or in the covari-
ant formalisms [31, 32, 33, 34, 35, 36], it has been possible to perform reliableSU(3)F -BχPT
extrapolations. Second, the systematic effects given by the decuplet degrees of freedom in the ex-
trapolation of the baryon masses and on the value of the sigma-terms remains unclear. While the
effect of∆ pieces onσπN atO(p3) in aSU(2) calculation has been claimed to be negligible [37], a
more thorough calculation of these effects up toO(p4) contradicted this statement [38].

In order to address these two issues, we report on the resultsof the extrapolation of the octet
(and decuplet) baryon masses obtained inSU(3)-BχPT in the EOMS scheme. In contrast with the
results obtained using the HB expansion, it has been found that a good description of the LQCD
results can be achieved within the Lorentz covariant approach to SU(3)-BχPT up toO(p4) and
considering the explicit inclusion of decuplet degrees of freedom [31, 32, 35, 36]. Moreover, an
order-by-order improvement in the description of the lattice results on the octet baryon masses was
found [31, 36]. Similar efforts in self-consistent formalisms up this accuracy have been reported
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Table 4: Predictions on theσπN andσsN terms (in MeV) of the baryon-octet in covariantSU(3)F -BχPT by
fitting the LECs to the PACS-CS [39] or LHPC [38] results. The errors are only statistical.

PACS-CS LHPC

No Dec. Dec. No Dec. Dec.

σπN 46(2) 59(2) 43(2) 61(2)

σsN 28(23) −7(23) 6(20) −4(20)

by Semke and Lutz in [33, 34] and also by the latter author in this conference.
In Fig. 2, we show the quark mass dependence and extrapolation of the lowest-lying baryon

masses in Lorentz covariant BχPT up toO(p3) for the case of the analysis of the PACS-CS re-
sults [39]. The strategy followed was to fit the 4 (3) LECs appearing at this order for the octet
(decuplet) baryons using the results of different LQCD collaborations. As it can be seen from the
figure, the lattice results are well reproduced and the extrapolation to the physical point agrees
with the experimental values within errors3. The improvement obtained at this order in covariant
SU(3)-BχPT in comparison with the description provided by the Gell-Mann-Okubo approach at
O(p2), stresses the relevance of the leading chiral non-analytical terms in the understanding the
nucleon mass from quark masses as light as those reached by PACS-CS [39] (Mπ ≃ 156 MeV),
whereas the comparison with HB [31] highlights the fact thatthe relativistic corrections greatly
improve the description of the LQCD results on the baryon masses at heavier quark-masses.

As a result of the determinations of the LECs from the fits, onecan predict the nucleon sigma
terms. In Table 4 we present the results onσπN andσsN after fitting the LECs to the PACS-CS
and LHPC results. We also present the results that are obtained in fits with (Dec.) and without
(No Dec.) the inclusion of decuplet resonances to discuss the systematic effects stemming from
the treatment of these contributions. As we can see from thistable, the results onσπN in either
case are very consistent with the analysis of the experimental data described in the previous section
in the case of approximate fulfillment of the Zweig rule. Thisconfirms, in a highly non-trivial
fashion, the conclusions atO(p3) in SU(3)-BχPT in the EOMS scheme derived exclusively from
experimental data. In particular, it confirms that a scenario with aσπN ≃ 60 MeV can not be ruled
out on the grounds of a small strangeness content of the nucleon at this order and that an irreducible
uncertainty of about 15 MeV originates from the omission of the decuplet.

In order to settle the question of the strangenessσs it is clear that one needs calculations at
O(p4). However, at this order a staggering amount of 15 new unknownLECs enter the calculation
and determining their values in a statistically sound fashion becomes a challenge. In fact, it seems
impossible to constraint their values resorting to experimental data only and results from LQCD
calculations have to be massively used. Nevertheless, firststeps in this direction have been given
and stable fits to global LQCD results on the baryon masses have been obtained. In particular, in
the works by Semke and Lutz [33, 34], reported also in this conference, the usual chiral expansion
is supplemented with another one in 1/Nc which allows to uncover hierarchies among the LECs
and to reduce their total number. More general fits taking into account all the 19 LECs and also

3Notice that in these fits the experimental baryon masses are not included in the fit, so the results obtained at the
physical point are a prediction of the extrapolation.
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Figure 3: Extrapolation of the PACS-CS results [39] on the lowest-lying baryon masses within the covariant
formulation ofSU(3)F -BχPT up toO(p4) and without decuplet degrees of freedom [35].

finite volume corrections have been presented in the EOMS scheme without [35] and with the de-
cuplet degrees of freedom [36] and using a total of 11 configurations at different quark masses and
volumes (each of which contains four points for theN, Λ, Σ and theΞ). The resulting good descrip-
tion of the quark mass dependence of the lowest lying octet baryons in this approach is illustrated
in Fig. 3 where the results of these fits is plotted against PACS-CS [39], LHPC [38], HSC [40]
and UKQCD [41] results. The NPLQCD [42] results are also usedbut not plotted and the BMW
results [43] are not included in the analysis. As for the sigma terms, the situation is at the moment
unclear. In this calculation the valuesσπN = 43(1)(6) MeV andσsN = 126(24)(54) MeV are re-
ported [35], whilst in the calculation at the same order by Semke et al. the valuesσπN = 32(2)
MeV andσsN = 22(20) MeV are given [34] (see M. Lutz’s talk in this conference). Therefore,
further efforts are required to understand these inconsistencies and to assess the convergence of the
chiral expansion of these observables. Agreement with the results obtained with cut-off regulariza-
tion [30] in the context of dimensional regularized approaches shall also be pursued.

4. Conclusions

We have reviewed the status and potential of the modern approaches to BχPT by showing
different recent determinations of the sigma terms. Besides being very important properties of the
nucleon, they can be determined from different perspectives, based onSU(2) or SU(3) approaches
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along one direction but also using either experimental dataor LQCD results along an orthogonal
one. We have seen how the situation in our understanding of the πN scattering data in a chiral
framework has been greatly improved thanks to the application of modern Lorentz covariant tech-
niques and dealing rigorously with the contributions of the∆(1232). Although at the moment the
resulting phenomenology still depends of the PW used as input, this progress offers the possibility
of extracting theπN scattering observables, and in particularσπN , in BχPT using directly the scat-
tering cross-section data. As for the LQCD determinations,there has been much progress both in
the quality of the LQCD results as well as on the accuracy of the BχPT calculations. Nevertheless,
further work is needed to settle this issue fromχPT perspective. On one hand, it would be desir-
able to revisit the lattice world data onMN using aSU(2) framework to determineσπN . On the
other, more data and, ideally, calculations and extrapolations on other observables inSU(3) seem
necessary to understand better the strangeness content of the nucleon atO(p4).
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