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1. Introduction

Scattering phase is an important physical observable. However, it is more advantageous to
convert it into a form of the nuclear potential (nuclear force). Once such a nuclear potential is
constructed, it is conveniently used to study a variety of phenomena in multi-nucleon system. It
provides us with physics insights into structures and reactions of atomic nuclei based on the nu-
cleon, the relevant effective degrees of freedom at low energy. It has an important influence on the
astrophysics such as the supernova explosion of type II and the structure of neutron stars through
the equation of states of cold and dense nuclear matter. Enormous efforts have been devoted to
the construction of realistic nuclear potentials [1, 2, 3]. By using about 40−50 adjustable param-
eters, these realistic nuclear potentials can reproduce several thousands of experimental NN data
with χ2/NDF ∼ 1, which consist of the scattering phase and the deuteron property. Recently, the
nuclear potentials based on the chiral effective field theory has been developed, which attracts an
growing interest in nuclear physics [4].

Unlike the ordinary two-nucleon sector, number of experimental information is too small to
construct realistic potentials in the hyperon sector. This is due to the short life time of hyperons,
which makes it difficult to perform direct scattering experiments. If realistic hyperon potentials
would exist, it could help us understand the structure of hyper-nuclei and possible generation of
hyperon matter in the neutron star core. The situation is similar for the three-nucleon potential,
which is expected to provide an important contribution at high density.

For those systems where experimental input is limited, we desire to have an alternative method.
A strong candidate would be the lattice QCD Monte Carlo calculation. Recently, a lattice QCD
method to determine hadron potentials has been developed by HAL QCD collaboration [5, 6, 7, 8,
9, 10, 11]. It has been extensively applied to many systems [12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22]. With this method, potentials are constructed from equal-time Nambu-Bethe-Salpeter (NBS)
wave functions. Because the information of scattering phase is embedded in the long distance
behaviors of NBS wave function, the resultant potentials are faithful to scattering data.

In this paper, after a brief review of the general idea how to define and construct a realistic
nuclear potential in lattice QCD, we present our recent progress on the NN potentials, three-nucleon
potential, and hyperon potentials.

2. General idea

2.1 Definition of the potential

To define the nuclear potential, we consider Nambu-Bethe-Salpeter (NBS) wave function for
two-nucleon system in the center of mass (CM) frame. To simplify the notation, we treat a nucleon
as a scalar boson in this section. (Extension to Dirac fermions is straightforward.) By choosing a
particular composite interpolating fields N(x) for a baryon, NBS wave function is written as

ψ~k(x− y) ≡ Z−1
N

〈
0 |T [N(x)N(y)]|N(~k)N(−~k), in

〉
, (2.1)

where~k denotes the asymptotic momentum. It is related to the relativistic total energy by ECM =

2
√

m2
N +~k2 with mN being the baryon mass. ZN denotes the normalization factor involved in the

limit N(x) → Z1/2
N Nout(x) as x0 → +∞.
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NBS wave function is related to the S-matrix through the reduction formula

〈N(~p)N(−~p),out|N(~k)N(−~k), in〉 (2.2)

= disc.+ i2
∫

d4x1 d4x2 eip1x1( 1 +m2
N) eip2x2( 2 +m2

N) ψ~k(x1,x2).

This formula can be used to derive the asymptotic form of the equal-time restriction of NBS wave
function at long spatial distance, i.e., |~x−~y| → large [6, 23, 24]

ψ~k(~x−~y) ≡ lim
x0→+0

ψ~k(~x,x0;~y,y0 = 0) ' eiδ0(k) sin(kr +δ0(k))
kr

+ · · · , (s-wave) (2.3)

where δ0(k) denotes the scattering phase. It is important to note that it has the same functional
form as the scattering wave function in the quantum mechanics. In Lüscher’s finite volume method,
which is the standard method to calculate the scattering phase in lattice QCD, the scattering phase
in NBS wave function is extracted from the energy spectrum in a finite periodic box [25]. (For an
explicit use of equal-time NBS wave function in Lüscher’s method, see Ref. [24].)

To define the nuclear potential, we use the fact that equal-time NBS wave function has the same
asymptotic form as scattering wave function of non-relativistic quantum mechanics. We introduce
our nuclear potentials by demanding that Schrödinger equation should reproduce the equal-time
NBS wave functions in the energy region below the pion threshold, i.e., ECM <∼ Eth ≡ 2mN +mπ as

(~k2/mN −H0)ψ~k(~r) =
∫

d3r′ U(~r,~r′)ψ~k(~r
′), (2.4)

where H0 ≡ −~∇2/mN denotes the unperturbed Hamiltonian for two-nucleon system in the CM
frame. Note that the resultant potential U(~r,~r′) is faithful to the scattering phase, because equal-
time NBS wave functions contain the scattering phase in their long distance part as Eq. (2.3)

The potential U(~r,~r′) so defined becomes a non-local operator in general. But, it can be define
to be independent of energy E.1 To see this, we first assume that ψ~k(~r) for different~k is linearly
independent from each other. Then, ψ~k(~r) has a dual basis ψ̃~k(~r), which serves as a “left inverse”
as ∫

d3r ψ̃~k′(~r)ψ~k(~r) = (2π)3δ 3(~k′−~k). (2.5)

By using this, we have

K~k(~r) ≡
(
~k2/mN −H0

)
ψ~k(~r) (2.6)

=
∫ d3k′

(2π)3 K~k′(~r)
∫

d3r′ψ̃~k′(~r
′)ψ~k(~r

′) =
∫

d3r′
[∫ d3k′

(2π)3 K~k′(~r)ψ̃~k′(~r
′)
]

ψ~k(~r
′).

Eq. (2.4) is arrived at, if we define U(~r,~r′) as

U(~r,~r′) ≡
∫ d3k

(2π)3 K~k(~r)ψ̃~k(~r
′). (2.7)

We see that, due to the integration over~k, U(~r,~r′) depend neither on~k nor on the energy E ≡~k2/mN .

1Our definition is different from the one given in Ref. [25], where an effective Schrödinger equation with energy-
dependent potential is defined.
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Non-local potentials are not convenient in practice. We therefore apply the derivative ex-
pansion to express U(~r,~r′) as a series of products of local functions and differential operators as
U(~r,~r′) = V (~r,~∇)δ (~r−~r′) with

V (~r,~∇) = V0(r)+Vσ (r)~σ1 ·~σ2 +VT(r)S12(r̂)+VLS(r)~L ·~S +O(∇2), (2.8)

where S12(r̂)≡ 3(~σ1 · r̂)(~σ2 · r̂)−~σ1 ·~σ2,~L ≡ i~r×~∇ and~S ≡~(~σ1 +~σ2)/2 denote the tensor operator,
the total angular momentum operator and the total spin operators, respectively. We refer to VC(r)≡
V0(r)+Vσ (r)~σ1 ·~σ2 as the central potential, which is a linear combination of the spin-independent
central potential V0(r) and the spin-dependent central potential Vσ (r), i.e., VC(r) = V0(r)−3Vσ (r)
for S = 0, whereas VC(r) = V0(r)+Vσ (r) for S = 1. VT(r) and VLS(r) denotes the tensor potential
and the spin-orbit (LS) potential. VC(r) and VT(r) terms are at the leading order (LO) which do not
contain any derivatives, whereas VLS(r) term is at the next to leading order (NLO) which contains
a single derivative.

We emphasize that the scattering phase calculated by using U(~r,~r′) does not depend on a
particular choice of interpolating field N(x), although the functional form of the potential U(~r,~r′)
depends on a particular choice of interpolating field N(x). This is guaranteed as far as N(x) satisfies
Eq. (2.3). (An example of unusable ones is the flat wall type interpolating field, which does not
satisfy Eq. (2.3).) Those potentials whose functional forms are different but lead to the same
scattering phase are called as phase equivalent potentials. They have the same on-shell information,
but they have different off-shell information. Good or bad choice of interpolating fields may be
determined by the convenience of the resulting potentials in practical use. A bad choice will lead to
a bad convergence of the derivative expansion. As a result, the potential becomes highly non-local
and inconvenient.

2.2 Construction of the potential

We first consider a method to obtain the nuclear potential U(~r,~r′) directly from the NBS wave
functions. It is possible to obtain the nuclear potential U(~r,~r′) by inversely solving the Schrödinger
equation by using NBS wave functions as inputs. The NBS wave functions are obtained from the
four point nucleon correlator

CNN(~x−~y; t) ≡ 1
V ∑

~x

〈
0
∣∣T [N(~x, t)N(~y, t) ·J̄ (t = 0)

]∣∣0〉 (2.9)

= ∑
~k

ψ~k(~x−~y) ·a~k exp
(
−2E~kt

)
,

where a~k ≡ 〈N(+~k)N(−~k)|J̄ (0)|0〉 denotes the overlap factor. E~k ≡
√

m2
N +~k2 denotes the rela-

tivistic energy of a single nucleon. To be specific, we restrict ourselves to the singlet-spin sector.
By adopting the LO truncation of our non-local potential as U(~r,~r′) ' VC(r), the central potential
can be obtained from a single NBS wave function for the ground state as

VC(r) =
~k2

mN
− lim

t→∞

H0CNN(~r, t)
CNN(~r, t)

, (2.10)

where ~k2/mN corresponds to the energy of the ground state. Here, t should be large enough to
achieve the ground state saturation of CNN(~r, t). Otherwise, contamination of excited states affects

4



P
o
S
(
C
D
1
2
)
0
2
5

Baryion-baryon Interactions from Lattice QCD Noriyoshi Ishii for HAL QCD Collaboration

the shape of NBS wave functions for the ground state, which leads to uncertainty of resultant
potentials. However, large statistical noise prevents us from going to such a large t region for
two-baryon system. In addition, when the spatial volume becomes the larger, it gradually becomes
the more difficult to achieve the ground state saturation. Note that a typical energy gap between
neighboring state shrinks as ∆E ∼ O(1/L2) as the spatial extension L becomes large.

There is another method to obtain our potential, which makes it possible to avoid the diffi-
culty associated with the ground state saturation [9]. With this method, the potential U(~r,~r′) is
obtained directly from the four-point nucleon correlator through the information of time-evolution.
To proceed, we derive an equation which describes the time-evolution of the four-point correlator
by utilizing a fact that our potential is independent of energy so that all the equal-time NBS wave
functions satisfy Eq. (2.4) for the states with E~k ≤ Eth ≡ 2mN + mπ . To derive it, we consider a
normalized four point correlator

R(~r, t) ≡ e2mNtCNN(~r, t). (2.11)

We assume that t is moderately large so that elastic contributions (E < Eth) dominate intermediate
states. Parallel to Eq. (2.9), R(~r, t) is decomposed as

R(~r, t) = ∑
~k

ψ~k(~r) ·a~k exp
(
−t∆W (~k)

)
, (2.12)

where ∆W (~k) ≡ 2E~k −2mN . By using an identity ∆W (~k) = ~k2

mN
− ∆W (~k)2

4mN
, the temporal derivative of

R(~r, t) is arranged in the following way:

− ∂
∂ t

R(~r, t) = ∑
~k

(
~k2

mN
− ∆W (~k)2

4mN

)
ψ~k(~r) ·a~k exp

(
−t∆W (~k)

)
(2.13)

= ∑
~k

(
H0 +U − 1

4mN

∂ 2

∂ t2

)
ψ~k(~r) ·a~k exp

(
−t∆W (~k)

)
,

where U denotes the integration operator associated with the interaction kernel U(~r,~r′). To obtain
the second line, we used Eq. (2.4) to replace~k2/mN by H0 +U . We finally arrive at the equation
which describes the time-evolution of the normalized four-point correlator:(

1
4mN

∂ 2

∂ t2 −
∂
∂ t

−H0

)
R(~r, t) =

∫
d3r′U(~r,~r′)R(~r′, t). (2.14)

It is important to note that this equation is valid even in the presence of excited states, as far as
elastic contributions E < Eth dominate the intermediate state.

We give an example to calculate a potential by using Eq. (2.14). To be specific, we restrict
ourselves to the singlet-spin sector. By adopting the LO truncation of U(~r,~r′), Eq. (2.14) leads us
to a new formula

VC(r) = −H0R(~r, t)
R(~r, t)

− (∂/∂ t)R(~r, t)
R(~r, t)

+
1

4mN

(∂/∂ t)2R(~r, t)
R(~r, t)

. (2.15)

Eq. (2.15) can be used to calculate our potential with much smaller t than Eq. (2.10). For Eq. (2.15)
to work, t has to be large enough so that the elastic contributions (E < Eth) can dominates interme-
diate states of R(~r, t). In contrast, for Eq. (2.10) to work, t has to be much larger so as to achieve
the ground state saturation.
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We give an explicit example that, with Eq. (2.15), we do not have to rely on the ground state
saturation. For this purpose, we introduce a source function with a single real parameter α as

fα(x,y,z) ≡ 1+α (cos(2πx/L)+ cos(2πy/L)+ cos(2πz/L)) . (2.16)

Note that fα(x,y,z) reduces to the flat wall source for α = 0. We use α to arrange the mixture of
excited state through the overlap factor a~k(α) as

CNN(~r; t) = ∑
~k

ψ~k(~r) ·a~k(α) · exp
(
−E~kt

)
. (2.17)

CNN(~r, t) is shown in Fig. 1(left) for α = 0,0.08,0.16 at t = 9. We see that there are deviations.

 0

 1e-22

 2e-22

 3e-22

 4e-22

 5e-22

 6e-22

 0  0.5  1  1.5  2  2.5

C
N

N
(r

, 
t)

r [fm]

α=0.16
α=0.08
α=0.00

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0  0.5  1  1.5  2  2.5

-H
0
 C

N
N

(r
,t

) 
/ 

C
N

N
(r

,t
) 

[M
e

V
]

r [fm]

α=0.16
α=0.08
α=0.00

Figure 1: (left) CNN(~r, t) at t = 9. (right) −H0CNN(~r, t)/CNN(~r, t) at t = 9.

These deviations are due to the different mixture of excited states caused by a~k(α), which indicates
that the contamination of excited states is not negligible at t = 9 in this example. The contamination
is transferred to α dependence of (H0CNN(~r, t))/CNN(~r, t), which cannot be absorbed by a single
number~k2/mN . Fig. 2 (left) shows VC(r) obtained by the new formula Eq. (2.15). We see that the
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Figure 2: (left) Central potential obtained by the new formula Eq. (2.15). (right) Three contributions to
VC(r) in Eq. (2.15) at t = 9 for α = 0.

α dependence disappears within the statistical errors, which indicates that Eq. (2.15) can safely be
used in the presence of excited states. Three contributions in Eq. (2.15) are plotted in Fig. 2(right).
We see that the first term gives the main trend. The second term gives an important correction. The
third term gives a negligible contribution in this example. Note that ~r dependence of the second
term can be used as a measure of departure of the ground state saturation, since it has a form of a
point-wise effective energy as − (∂/∂ t)R(~r,t)

R(~r,t) = − ∂ log(R(~r,t))
∂ t .
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3. Numerical Results

3.1 2+1 flavor QCD results of nuclear forces

By using 2+1 flavor gauge configurations generated by PACS-CS collaboration [26], we present
the 2+1 flavor QCD results of nuclear forces VC(r) and VT(r) for the positive parity sector. The
gauge configurations are generated by employing the RG improved Iwasaki gauge action at β =
1.9 with the non-perturbatively O(a) improved Wilson quark action with CSW = 1.715 at κud =
0.13700,0.13727,0.13754 and κs = 0.13640, which leads to the lattice spacing a ' 0.091 fm
(a−1 = 2.176(31) GeV), the spatial extension L = 32a' 2.90 fm, the pion mass mπ ' 701,570,411
MeV and the nucleon mass mN ' 1584,1412,1215 MeV, respectively.
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Figure 3: 2+1 flavor QCD result of the spin-singlet central potential, spin-triplet central potential and the
tensor potential for the even parity sector for mπ ' 411,570,701 MeV.

Fig. 3 shows the 2+1 flavor QCD results of central and tensor potentials for even parity sector.
These potentials show the phenomenologically expected properties, i.e., the central potentials have
repulsive cores at short distance surrounded by attractive pockets in the medium distance. As
the decreasing quark mass, the repulsive core grows, the attractive pockets are enhanced and the
strength of tensor potential is enhanced.

We parametrize these potentials by using a functional form of AV18[1]. We perform a simul-
taneous fit of two VC(r) and one VT(r) by

VC;10(r) = − f 2mπYc(r)+ Ic
10T 2

c (r)+
(
Pc

10 +(mπr)Qc
10 +(mπr)2Rc

10
)

Wr0,a(r) (3.1)

VC;01(r) = − f 2mπYc(r)+ Ic
01T 2

c (r)+
(
Pc

01 +(mπr)Qc
01 +(mπr)2Rc

01
)

Wr0,a(r)

VT ;01(r) = − f 2mπTc(r)+ It
01T 2

c (r)+
(
Pt

01 +(mπr)Qt
01 +(mπr)2Rt

01
)

Wr0,a(r),

which have 16 adjustable parameters: f 2,c,r0,a, Ic
10,P

c
10,Q

c
10,R

c
10, Ic

01,P
c
01,Q

c
01,R

c
01, It

01,P
t
01,Q

t
01,R

t
01.

Suffixes “10” and “01” indicate T = 1,S = 0 and T = 0,S = 1 respectively. Superindices “c”
and “t” indicate “central” and “tensor”, respectively. Yc(r) ≡ (1− e−cr2

)e−mπ r/(mπr) denotes the
Yukawa function and Tc(r)≡ (1−e−cr2

)2(1+3/(mπr)+3/(mπr)2)e−mπ r/(mπr) denotes the tensor
function with a Gaussian cutoff parameter c at short distance. Wr0,a(r) ≡ 1/(1 + e(r−r0)/a denotes
Woods-Saxon function. Our tensor potential has a cusp at r =

√
3a ' 0.16 fm, where a smooth

parametrization becomes difficult. To avoid this, we use r ≥
√

3a as the fitting region for the
tensor force, whereas linear interpolation is performed in the region r <

√
3a. As an attempt to

take into account a possible artifact of periodic boundary, we use V̄C;190(~r) ≡ ∑~n∈Z3 Vc;10(|~r−L~n|),
V̄C;01(~r)≡ ∑~n∈Z3 Vc;01(|~r−L~n|), V̄T ;01(~r)≡ ∑~n∈Z3 VT ;01(|~r−L~n|), i.e., we use V̄C;10(~r), V̄C;01(~r) and
V̄T ;01(~r) defined on the finite torus to extract spherically symmetric VC;10(r), VC;01(r) and VT ;01(r).
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Fig. 4(left) shows the result of the spin-singlet central potential for mπ ' 570 MeV. We see that the
lattice data is smoothly parametrized. Deviation of VC;10(r) from V̄C;10(~r) is seen to be less signifi-
cant, which indicates that L ' 3 fm is sufficient for mπ ' 570 MeV. (Deviation becomes gradually
important at mπ ' 411 MeV.)

These results are used to solve Schrödinger equation for scattering observables. The resultant
scattering phase for 1S0 channel is shown in Fig. 4(right). We see that the behaviors are qualitatively
reasonable. However, the strength is weaker than the experimental one. In addition, they do not
tend to approach the experimental one in this quark mass region. Possible reason would be that, in
this quark mass region, the repulsive core is enhanced faster than the attractive pocket grows, which
indicates the importance of direct lattice QCD calculation at smaller quark mass region. Note that
the result indicates that NN interaction is attractive at low energy, but it is not strong enough to
make a bound state 2.
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Figure 4: (left) The result of the fit for the spin-singlet central potential for mπ ' 570 MeV. (right) The
scattering phase in 1S0 channel for mπ ' 411,570,701 MeV by using the resultant potentials.

3.2 Nuclear forces for the odd parity sector and the spin-orbit force

Nuclear potentials in odd parity sector have to be determined for complete determination of
nuclear potentials on the lattice. These potentials naturally enter the calculation, whenever we
study the nuclear matter and multi-nucleon systems involving more than three nucleons. Note that,
even if the total multi-nucleon system has even parity, its two-body subsystem can have odd parity.

The spin-orbit potential plays important roles in various phenomena in nuclear physics and as-
trophysics. It induces the one-body spin-orbit term in the average single-particle nuclear potential,
which is used to explain the magic numbers in atomic nuclei. By giving a strong attraction to two
nucleon system in 3P2 channel at high energy/density, the spin-orbit potential is expected to induce
the neutron superfluidity in the neutron stars, which provides a mechanism of neutron star cooling.

As a recent progress, we have extended our method to the nuclear potentials in odd parity
sector and the spin-orbit potential [18, 19]. Before, our studies were restricted to the central and
the tensor potentials for even parity sector due to a technical reason that “orbital part” of our two-
nucleon sources were “s-wave” so that the accessible quantum numbers were restricted to JP ' 0+

and 1+. To obtain the nuclear potentials for odd parity sectors and the spin-orbit potential, we

2This is in conflict with Refs. [27, 28].
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employ a momentum wall source, which makes it possible to access the NBS wave functions for
JP ' 0−,1−,2− with a projection formula based on the cubic group. The central, tensor and spin-
orbit potentials in the odd parity sector are obtained by inversely solving coupled Schrödinger
equations for 3P0, 3P1, 3P2 −3 F2 channels.
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Figure 5: The central (spin-triplet), tensor and spin-orbit potentials for odd parity sector.

The calculation is performed by using 2 flavor gauge configuration generated by CP-PACS
collaboration on 163×32 lattice with the RG improved Iwasaki gauge action at β = 1.95 and O(a)
improved Wilson quark action at κ = 0.1375 and CSW = 1.53, which leads to the lattice spacing
a ' 0.155 fm (a−1 = 1.269(14) GeV), the spatial extension L = 16a ' 2.49 fm, the pion mass
mπ ' 1133 MeV and the nucleon mass mN ' 2158 MeV [29]. Fig. 5 shows the results. We see that
the results reproduce qualitative features as (1) VC(r) has a repulsive core. (2) VT(r) is positive and
weak. (3) VLS(r) is large and negative.

3.3 Three-nucleon forces

Three-nucleon potential receives a growing interest in nuclear physics and astrophysics. Pre-
cision calculations of few-nucleon systems reveal that, although the two-nucleon potential can
reproduce a general trend of spectra of few-nucleon system, three-nucleon potential is needed for a
quantitative purpose. The three-nucleon potential has a large influence on the supernova explosion
and the structure of neutron star, because the three-nucleon potential is expected to play a more im-
portant role at high density. However, experimental data is still limited, and the phenomenological
construction of three-nucleon potential has to involve inevitable uncertainty.

It is possible to apply our lattice QCD method to construct three-nucleon potential, which how-
ever requires enormous calculational resources. Although a calculation of three-nucleon potential
at all spatial points does not seem to be realistic for the moment3, it is possible to perform a cal-
culation on restricted spatial region. By using 2 flavor gauge configuration generated by CP-PACS
collaboration (same as Sect.3.2), three-nucleon potential is calculated on the three-particle spatial
region {(~x1,~x2,~x3)|~x3 = (~x1 +~x2)/2}, which is referred to as “linear setup” [16, 21]. Fig. 6 shows
the result, where the three-nucleon potential in the triton channel is plotted against r2 ≡ |~x1−~x2|/2.
An indication of repulsion is observed at short distance, while it is small at long distance due to the
suppression of two-pion exchange by the heavy pion.

3Situations are being improved. New lattice techniques are being accumulated to study multi-baryon system [30,
31, 32].
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Figure 6: The three-nucleon potential in the triton channel with linear setup.

3.4 Hyperon forces

Hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions serve as important inputs in
studying hyper-nuclei and hyperon matter, which is expected to play an important role in neutron
star core. However, phenomenological construction of hyperon potentials involves large uncer-
tainty due to the limited experimental information on hyperon scattering data.
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Figure 7: Hyperon potentials in the flavor SU(3) limit.

Hyperon potentials are one of the best targets to apply our lattice QCD method. We have
started our calculations from NΞ(I = 1) [12], and then moved to NΛ and NΣ(I = 3/2) [20]. Since
there are so many two-hyperon channels, it is better to understand the general trend first by con-
sidering the idealized flavor SU(3) limit. In this limit, the flavor structure of two-baryon system is
classified by the following six irreducible representations:

8⊗8 = 27⊕8S ⊕1︸ ︷︷ ︸
symmetric

⊕10∗⊕10⊕8A︸ ︷︷ ︸
anti−symmetric

. (3.2)
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“symmetric” and “anti-symmetric” refer to the symmetry when flavors of two baryons are ex-
changed. In even parity sector, tensor potential couples to 10∗, 10 and 8A, since their total spin S is
triplet.

The lattice QCD calculation is performed by using 3 flavor QCD gauge configuration on a
323 × 32 lattice generated by HAL QCD collaboration by employing the RG improved Iwasaki
gauge action at β = 1.83 and O(a) improved Wilson quark action at κuds = 0.13840 with CSW =
1.761, which leads to the lattice spacing a = 0.121(2) fm, the spatial extension L = 32a ' 3.87 fm
and hadron masses as mPS ' 469 MeV, mvec ' 829 MeV, mbaryon ' 1161 MeV [15].

Fig. 7 shows the central and the tensor potentials in the even parity sector. We see that they
show rich flavor structure. Note that two-nucleon system belongs to 27 and 10∗. Therefore, the
qualitative behaviors of these two are essentially the same as the conventional nuclear potentials
given in Fig. 3. Remarkable difference is found for V (1). It is attractive at all distance involving no
repulsive core, and a bound H-dibaryon is found to exist in this channel [14, 15]. Short distance
behaviors of these six potentials are consistent with the quark model prediction indicating the
importance of quark Pauli blocking effect.

Flavor SU(3) symmetry is broken in the real world. Six irreducible representations begin to
couple. Eight octet baryons split into two N, one Λ, three Σ, and two Ξ, and they obtain their
own mass, which gives rise to several inelastic thresholds in two-hyperon systems. To study such
systems, our method is extended to coupled channel formalism [7], which is first applied to the
ΛΛ-NΞ-ΣΣ coupled system to reveal the nature of H-dibaryon in the real world [22].

4. Summary

We have reported lattice QCD study of baryon-baryon interaction based on the method de-
veloped by HAL QCD collaboration. The baryon-baryon potentials are defined from Schrödinger
equation by using equal-time Nambu-Bethe-Salpeter (NBS) wave functions. Resultant potentials
respect the scattering data, because they are defined to reproduce the scattering phase embedded
in the long distance part of the equal-time NBS wave functions. The potentials thus defined can
efficiently be calculated from the four-point baryon correlators, which makes it possible to extract
the potentials even in the presence of contamination of excited states. These techniques have been
applied to many systems. Starting from the central and the tensor NN potentials in even parity
sector, it has now been extended to the NN potentials in odd parity sector, the spin-orbit potential,
three-nucleon potentials, and various hyperon potentials.

With the growth of the performance of super computers, it will soon become possible to per-
form these calculations with a realistic setup employing the physical quark mass on a large spatial
volume. The results should be applied not only to (hyper) nuclei, but also to astrophysics. Lattice
QCD must play a unique role in studying the systems with limited experimental information.

Lattice QCD Monte Carlo calculations have been performed on Blue Gene/L at KEK, T2K at
University of Tsukuba and SR16000 at YITP in Kyoto University. We thank CP-PACS and
PACS-CS Collaborations [29, 26] and ILDG/JLDG [34] for dynamical QCD gauge
configurations. We are grateful for authors and maintainers of CPS++[33], a modified version of
which is used in these calculations.
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