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1. Introduction

One of the great advantages of the chiral effective field theory (χEFT) description of the
nuclear interaction at low energy is the possibility to derive electroweak currents consistently with
the interactions. Indeed, the chiral symmetry of strong interactions severely constrains the form
of both, since electroweak probes are coupled to its Noether currents. Within the effective theory,
chiral symmetry constraints are implemented requiring the Lagrangian to be invariant under local
chiral transformations [1], with the external currents rµ , `µ transforming as the corresponding
gauge fields. Explicit chiral symmetry breaking can be taken into account by setting the scalar
source χ proportional to the quark mass matrix, while the coupling to the external photons Aµ is
obtained through rµ = `µ = QAµ where Q = ediag(2

3 ,−1
3) in the meson sector and Q = ediag(1,0)

in the nucleon sector. The effective Lagrangian is then ordered in a combined expansion (chiral
expansion) in powers of quark masses and small momenta, where χ ∼ O(p2).

The Hamiltonians describing the interactions of pions, nucleons, and photons, are derived from
the chiral Lagrangians [2] in the canonical formalism. The relevant contributions for our discussion
read

HπN =
∫

dxN†
[gA τa

Fπ

σσσ ·∇∇∇πa+
τττ

F2
π

· (πππ×∂
0
πππ)+ . . .

]
N, (1.1)

HγN = e
∫

dxN†
[
eN A0 + i

eN

2m

(
−←−∇∇∇ ·A+A ·−→∇∇∇

)
− µN

2m
σσσ ·∇∇∇×A

−2 µN− eN

8m2

(
∇∇∇

2A0 +σσσ ×∇∇∇A0 ·−→∇∇∇ −←−∇∇∇ ·σσσ ×∇∇∇A0
)
+ . . .

]
N , (1.2)

Hγπ = e
∫

dx
[
A0 (

πππ×∂
0
πππ
)

z + εzab πa (∇∇∇πb) ·A+ . . .
]
, (1.3)

HγπN = e
∫

dxN†

[
− gA

Fπ

(τττ×πππ)z σσσ ·A+
gA

2mFπ

(τττ ·πππ +πz) σσσ ·∇∇∇A0

+

(
d′8
Fπ

∇∇∇πz +
d′9
Fπ

τa∇∇∇πa +
d′21
Fπ

εzabτb σσσ ×∇∇∇πa

)
·∇∇∇×AAA + . . .

]
N , (1.4)

where the parameters di are (unknown) low-energy constants (LECs), the isospin operators eN and
µN are defined as

eN = (1+ τz)/2 , κN = (κS +κV τz)/2 , µN = eN +κN , (1.5)

and κS and κV are the isoscalar and isovector combinations of the anomalous magnetic moments
of the proton and neutron. The isospin doublet of (non-relativistic) nucleon fields, isospin triplet of
pion fields, and electromagnetic (EM) vector field are denoted by N, πππ , and Aµ , respectively, and σσσ

and τττ are spin and isospin Pauli matrices. The arrow over the gradient specifies whether it acts on
the left or right nucleon field. Only terms relevant for the construction of the two-nucleon potential
and/or EM charge and current operators at one loop are retained in the interaction Hamiltonians
listed above. The naive power counting of the resulting vertices follows by noting that each gradient
brings in a factor of Q, where Q is the low-momentum scale, so, for example, the two terms in HπN

are each of order∼Q, while the first terms in HγπN are of order∼ eQ0 and∼ eQ, and the remaining
ones in second line of Eq. (1.4) are of order ∼ eQ2.
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Two-nucleon contact Hamiltonians can conveniently be written in terms of the standard set of
operators introduced in Ref. [3] as

HCT =
∫

dx

[
1
2

CS OS +
1
2

CT OT +
1
2

C1(O1 +2O2)−
1
8

C2(2O2 +O3)

+
1
2

C3(O9 +2O12)+
1
8

C4(O9 +O14)−
1
4

C5(O6−O5)

+
1
2

C6(O7 +2O10)+
1

16
C7(O7 +O8 +2O13)

]
, (1.6)

where the Ci are LECs which are typically determined by fitting low-energy two-nucleon scatter-
ing data and the deuteron binding energy, and relativistic corrections have been ignored. Of course,
minimal substitution ∇∇∇N → (∇∇∇− i eeNA)N in HCT leads to a (contact) Hamiltonian Hγm

CT which
includes the coupling to the EM field and implies a (two-nucleon) contact current operator. How-
ever, non-minimal couplings through the electromagnetic field tensor Fµν are also allowed. It can
be shown that the only two independent operator structures are

Hγnm
CT = e

∫
dx
[
C′15 N†

σσσN N†N +C′16

(
N†

σσσ τzN N†N−N†
σσσN N†

τzN
)]
·∇∇∇×A , (1.7)

where the isoscalar C′15 and isovector C′16 LECs (as well as the di’s multiplying the higher order
terms in the γπN Hamiltonian) can be determined by fitting photo-nuclear data in the few-nucleon
systems.

2. From amplitudes to potentials

The transition amplitudes obtained from the above Hamiltonians can be expanded in terms of
Q/Λχ , where Q� Λχ is the pion momentum-coupling and Λχ ∼ 1 GeV is the chiral-symmetry
breaking scale. For each given order of the expansion, the number of terms contributing to the
amplitude is finite [4]. Nuclear force and current operators, are then extracted from the transition
amplitude, which can be represented by time-ordered diagrams scaling as a power of Q/Λχ .

Reducible diagrams, i.e. diagrams which involve purely nucleonic intermediate state, are en-
hanced compared to irreducible diagrams by a factor of Q for each purely nucleonic intermediate
state. This feature spoils the power counting scheme. In addition, within the static limit—that is in
the limit in which m→∞, or equivalently neglecting nucleon kinetic energies—reducible contribu-
tions are infrared-divergent. According to the prescription proposed by Weinberg[4] nuclear force
(and current) operators are given by the irreducible contributions only. Reducible contributions,
instead, are generated by solving the Schrödinger equation iteratively with the nuclear potential
(and current) operator arising from the irreducible amplitude.

Our formalism follows this prescription. However, the omission of reducible contributions
from the definition of nuclear operators needs to be dealt with care when the irreducible amplitude
is evaluated under an approximation. For example, if the irreducible amplitude is evaluated under
the static limit approximation (which is usually the case) then the iterative process will generate
only part of the reducible amplitude (i.e. the one which includes the approximate static nuclear
operators). The reducible part of the amplitude which is not generated by iteration, in this case
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the one that is obtained going beyond the static limit approximation, needs to be incorporated
order by order—along with the irreducible amplitude—in the definition of nuclear operators. This
scheme, in combination with time-ordered perturbation theory (TOPT)—which is best suited to
separate the reducible content from the irreducible one, has been implemented in Refs. [5, 6, 7].
This method leads to nuclear operators which are not-uniquely defined due to the not-uniqueness
of the transition amplitude off-the-energy shell. However the operators, although not-unique, are
unitarily equivalent, therefore the description of physical systems is not affected by this ambiguity.

Another approach, implemented to face the difficulties posed by the reducible amplitude be-
havior, has been introduced by Okubo [8] and extensively developed by Epelbaum and collab-
orators [9]. The method, referred to as the unitary transformation method, is based on TOPT
and exploits a unitary transformation to decouple the Fock space of pions and nucleons into two
subspaces, one containing only pure-nucleonic states and the other one involving states which
contemplate at least one pion. In this decoupled space, the amplitude does not involve enhanced
contributions associated with the reducible diagrams. The subspaces are not-uniquely defined be-
cause it is always possible to perform additional unitary transformations onto them, with a conse-
quent change in the formal definition of the resulting nuclear operators. This, of course, does not
affect the physical representations. Nuclear electromagnetic charge and current operators within
this scheme have been developed in Refs. [10, 11], including the complete renormalization of the
tree-level currents. This makes it possible to carry fully consistent ChEFT calculations of nuclear
electromagnetic observables, using nuclear wave functions arising from the potential developed
within the same scheme. It is worthwhile to mention that the first set of EM nuclear current opera-
tors derived within a pion-nucleon χEFT framework has been provided by Park, Min, and Rho in
Ref. [12]. In that work, the authors carry out the calculation of the transition amplitude in covariant
perturbation theory. The similarities and differences between this last approach and those based on
TOPT described above have been discussed in detail in Refs. [5, 6].

In what follows, we focus on the method developed in Refs. [5, 6, 7] and show how nuclear
operators are extracted from the transition amplitude. We are especially interested in the construc-
tion of the EM transition operators, but due to the aforementioned ambiguity in the definition of the
off-the-energy shell amplitude, we need to derive the nuclear potential along with the EM transition
operators. This allows us to correctly separate the iterative content of the reducible amplitude from
the genuine one contributing to the definition of the operators.

The conventional perturbative expansion for the two-nucleon (NN) scattering amplitude reads

〈 f | T | i〉= 〈 f | H1

∞

∑
n=1

(
1

Ei−H0 + iη
H1

)n−1

| i〉 , (2.1)

where | i〉 and | f 〉 represent the initial and final NN states of energy Ei = E f , H0 is the Hamiltonian
describing free pions and nucleons, and H1 is the Hamiltonian describing interactions among these
particles (Sec. 1). The evaluation of this amplitude is carried out in practice by inserting complete
sets of H0 eigenstates between successive terms of H1. Power counting is then used to organize the
expansion in powers of Q/Λχ � 1, where Λχ ' 1 GeV is the typical hadronic mass scale.

In the perturbative series, Eq. (2.1), a generic (reducible or irreducible) contribution is char-
acterized by a certain number, say N, of vertices, each scaling as Qαi ×Q−βi/2 (i=1, . . . ,N), where
αi is the power counting implied by the relevant interaction Hamiltonian and βi is the number of
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pions in and/or out of the vertex, a corresponding N–1 number of energy denominators, and possi-
bly L loops. Out of these N–1 energy denominators, NK of them will involve only nucleon kinetic
energies, which scale as Q2, and the remaining N−NK−1 will involve, in addition, pion energies,
which are of order Q. Loops, on the other hand, contribute a factor Q3 each, since they imply
integrations over intermediate three momenta. Hence the power counting associated with such a
contribution is (

N

∏
i=1

Qαi−βi/2

)
×
[
Q−(N−NK−1) Q−2NK

]
×Q3L . (2.2)

Clearly, each of the N−NK−1 energy denominators can be further expanded as

1
Ei−EI−ωπ

=− 1
ωπ

[
1+

Ei−EI

ωπ

+
(Ei−EI)

2

ω2
π

+ . . .

]
, (2.3)

where EI denotes the kinetic energy of the intermediate two-nucleon state, ωπ the pion energy (or
energies, as the case may be), and the ratio (Ei−EI)/ωπ is of order Q.

The Q-scaling of the interaction vertices and the considerations above show that T admits the
following expansion:

T = T (0)+T (1)+T (2)+ . . . , (2.4)

where T (n) ∼ Qn. A two-nucleon potential v can then be derived which, when iterated in the
Lippmann-Schwinger (LS) equation,

v+ vG0 v+ vG0 vG0 v+ . . . , (2.5)

leads to the on-the-energy-shell (Ei = E f ) T -matrix in Eq. (2.4), order by order in the power count-
ing. In Eq. (2.5), G0 denotes the free two-nucleon propagator, G0 = 1/(Ei−EI + iη), and we
assume that

v = v(0)+ v(1)+ v(2)+ . . . , (2.6)

where the yet to be determined v(n) is of order Qn. We also note that, generally, a term like
v(m) G0 v(n) is of order Qm+n+1, since G0 is of order Q−2 and the implicit loop integration brings in
a factor Q3. Having established the above power counting, we obtain

v(0) = T (0) , (2.7)

v(1) = T (1)−
[
v(0) G0 v(0)

]
, (2.8)

v(2) = T (2)−
[
v(0) G0 v(0) G0 v(0)

]
−
[
v(1) G0 v(0)+ v(0) G0 v(1)

]
, (2.9)

v(3) = T (3)−
[
v(0) G0 v(0) G0 v(0) G0 v(0)

]
−
[
v(1) G0 v(0) G0 v(0)+permutations

]
−
[
v(2) G0 v(0)+ v(0) G0 v(2)

]
−
[
v(1) G0 v(1)

]
. (2.10)

Since the potential is thus defined from on-shell amplitudes order by order, different off-shell exten-
sions of the potential at a given order lead to different (on-shell) potentials at higher orders. In fact,
there is an infinite class of v(2)(ν) non-static corrections–labeled by the parameter ν [13, 14, 15, 7]–
which, while equivalent on the energy-shell, are different off the energy-shell, and therefore lead
to different potentials v(3)(ν) in Eq. (2.10). However, this ambiguity is of no consequence, since
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it can be shown that different off-the-energy-shell extrapolations v(2)(ν) and v(3)(ν) are unitarily
equivalent [13, 7].

The inclusion (in first order) of electromagnetic interactions in the perturbative expansion of
Eq. (2.1) is in principle straightforward. The transition operator can be expanded as

Tγ = T (−3)
γ +T (−2)

γ +T (−1)
γ + . . . , (2.11)

where T (n)
γ is of order eQn (e is the electric charge). The nuclear charge, ρ , and current, j, operators

follow from vγ = A0 ρ −A · j, where Aµ = (A0,A) is the electromagnetic vector field, and it is
assumed that vγ has a similar expansion as Tγ . The requirement that, in the context of the LS
equation, vγ matches Tγ order by order in the power counting implies the following relations:

v(−3)
γ = T (−3)

γ (2.12)

v(−2)
γ = T (−2)

γ −
[
v(−3)

γ G0 v(0)+ v(0) G0 v(−3)
γ

]
, (2.13)

v(−1)
γ = T (−1)

γ −
[
v(−3)

γ G0 v(0) G0 v(0)+permutations
]
−
[
v(−2)

γ G0 v(0)+ v(0) G0 v(−2)
γ

]
,(2.14)

v(0)γ = T (0)
γ −

[
v(−3)

γ G0 v(0) G0 v(0) G0 v(0)+ permutations
]

−
[
v(−2)

γ G0 v(0) G0 v(0)+permutations
]

−
[
v(−1)

γ G0 v(0)+ v(0) G0 v(−1)
γ

]
−
[
v(−3)

γ G0 v(2)+ v(2) G0 v(−3)
γ

]
, (2.15)

v(1)γ = T (1)
γ −

[
v(−3)

γ G0 v(0) G0 v(0) G0 v(0) G0 v(0)+ permutations
]

−
[
v(−2)

γ G0 v(0) G0 v(0) G0 v(0)+ permutations
]

−
[
v(−1)

γ G0 v(0) G0 v(0)+permutations
]
−
[
v(0)γ G0 v(0)+ v(0) G0 v(0)γ

]
−
[
v(−3)

γ G0 v(2) G0 v(0)+permutations
]
−
[
v(−3)

γ G0 v(3)+ v(3) G0 v(−3)
γ

]
, (2.16)

where v(n)γ = A0 ρ(n)−A · j(n), v(n) are the NN potentials constructed in Eqs. (2.7)–(2.10) (the ν

dependence of v(2) and v(3) is understood), and use has been made of the fact that v(1) vanishes.
In the propagator G0, the initial energy Ei includes the photon energy ωγ (itself of order Q2),
since Ei = E1 +E2 +ωγ = E ′1 +E ′2, and the intermediate energy EI may include, in addition to the
kinetic energies of the intermediate nucleons, also the photon energy, depending on the specific
time ordering being considered.

3. Electromagnetic current and charge operators up to one loop

The contributions to the electromagnetic current operator up to one loop are illustrated dia-
grammatically in Fig. 1. They follow from the interaction Hamiltonians listed in Sec. 1 and the
perturbative expansion for v(n)γ in Eqs. (2.13)–(2.16). There is no n = −3 contribution to j, there-
fore the current operator is unaffected by the non-static corrections entering the potentials v(2) and
v(3). The lowest order (n = −2) consists of the single-nucleon convection and spin-magnetization
currents:

j(−2) =
e

2m
(2eN,1 K1 + i µN,1 σσσ1×q+1 
 2) , (3.1)

6
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where q is the momentum carried by the external field, ki and Ki denote the combinations of initial
and final nucleon momenta ki = p′i−pi, Ki = (p′i +pi)/2, and eN,i and µN,i have been defined in
Eq. (1.5). The counting eQ−2 follows from the product of a factor eQ1 associated with the γNN
vertex, and a factor Q−3 due to the momentum-conserving δ -function implicit in a disconnected
term of this type. We refer to Refs. [5, 6, 16] for the explicit expressions up to N3LO, as obtained

eQ−2

eQ−1

eQ0

eQ

Figure 1: Diagrams illustrating one- and two-body currents entering at LO (eQ−2), NLO (eQ−1), N2LO
(eQ0), and N3LO (eQ1). Nucleons, pions, and photons are denoted by solid, dashed, and wavy lines. Only
the relevant topologies are indicated. Loop corrections to short-range currents turn out to vanish.

within the formalism outlined in Sec. 2. They depend on the known parameters gA and Fπ (NLO
and N3LO), and the nucleon’s magnetic moments (LO and N2LO). Loop corrections to the short-
range currents turn out to cancel [16]. Unknown LECs enter the N3LO OPE contribution involving
the γπN vertex of order eQ2 from HγπN ,

j(1)
γπN = i e

gA

F2
π

σσσ2 ·k2

ω2
k2

[(
d′8τ2,z +d′9 τττ1 · τττ2

)
k2−d′21(τττ1× τττ2)z σσσ1×k2

]
×q+1 
 2 . (3.2)

The contributing LECs could be fixed by relating them, in a resonance saturation picture, to the
couplings in the N to ∆ excitation and ρπγ transition currents, or they could be fixed by pion
photo-production data on a single nucleon or photo-nuclear data at low energies. Further LECs
enter the two-contact currents, from minimal and non-minimal substitution, using Fierz identities
they can be written as

j(1)CT,m =
i

16
(τττ1× τττ2)z

[
[C2 +3C4 +C7 +(C2−C4−C7)σσσ1 ·σσσ2] (k1−k2)

+C7 [σσσ1 · (k1−k2)σσσ2 +σσσ2 · (k1−k2)σσσ1]
]

− iC5

4
(σσσ1 +σσσ2)× (e1 k1 + e2 k2) . (3.3)

and

j(1)CT,nm =−i e
[
C′15 σσσ1 +C′16 (τ1,z− τ2,z)σσσ1

]
×q+1 
 2 . (3.4)

7
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No three-body currents arise up to N3LO included here, due to cancellations between irreducible
and recoil-corrected reducible diagrams, similarly to what happens for the three-nucleon force.

Contributions to the two-body charge operators ρ(n) up to order eQ1 (N4LO) included are
illustrated in Fig. 2. The eQ−3 (LO) operator, resulting from the first term of the γN interaction
Hamiltonian in Eq. (1.2), is

ρ
(−3) = eeN,1 +1 
 2 . (3.5)

There are no NLO (eQ−2) contributions, whereas at N2LO there is a relativistic correction of or-
der (Q/m)2 to the LO charge operator, which results from the second line of Eq. (1.2). At this
order, there are in principle also a pion-in-flight term, which, however, turns out to vanish when
the contributions of the six time-ordered diagrams, evaluated in the static limit, are summed up,
and a one-pion-exchange (OPE) contribution, which vanishes due to a similar cancellation. We

eQ−3

eQ−1

eQ0

eQ

Figure 2: Diagrams illustrating one- and two-body charge operators entering at LO (eQ−3), N2LO (eQ−1),
N3LO (eQ0), and N4LO (eQ1). The square represents the (Q/m)2, or (v/c)2, relativistic correction to the
LO one-body charge operator, whereas the solid circle is associated with a γπN charge coupling of order
eQ. Only the relevant topologies are indicated.

note that the power counting is different for the current operator, for which the LO term is of
order eQ−2 (in the two-nucleon system), i.e. it is suppressed by an extra power of Q relative to
ρ(−3), and where there are NLO (eQ−1) corrections involving seagull and in-flight contributions
associated with OPE, which have no counterpart in the present case. The pion-in-flight and OPE di-
agrams also lead to N3LO contributions due to non-static corrections resulting from the expansion
of the denominators involving pion energies as in Eq. (2.3). In particular, the specific form of the
N3LO charge operator depends on the (non-unique) off-the-energy shell prescription adopted for
the non-static piece in the OPE potential [7]. The same applies to part of the N4LO contributions.
This ambiguity in the non-static OPE and TPE potentials and accompanying charge operators is
of no consequence, however, since different form for these are related to each other by a unitary

8



P
o
S
(
C
D
1
2
)
0
2
7

Nuclear electromagnetic charge and current operators in Chiral EFT Luca Girlanda

transformation[7, 16]. Thus, provided a consistent set is adopted, predictions for physical observ-
ables, such as the few-nucleon charge form factors, will remain unaffected by the non-uniqueness
associated with off-the-energy-shell effects. We note that, while the loop integrals entering (the
non-vanishing) diagrams at N4LO are individually ultra-violet divergent, their sum is finite, i.e. the
divergencies cancel out. This is in line with the fact that there are no counter-terms at this order.
Finally, charge conservation,

ρ(q = 0) =
∫

dxρ(x) = e (e1 + e2) , (3.6)

where ρ(x and ρ(q) denote, respectively, the charge density and its Fourier transform, implies
that the charge operators ρ(n≥−2)(q) vanish at q = 0. This latter requirement is satisfied by the
operators illustrated in Fig. 2, regardless of the adopted off-the-energy shell prescription[7]. We
also emphasize that, up to N4LO included, there are no unknown LECs.

4. Fixing the LECs

The operators described in the previous section depend on the LECs Ci entering the two-
nucleon contact Lagrangian through the minimal coupling procedure, on the non-minimal coupling
LECs C′15 and C′16 and on the subleading pion-nucleon couplings d′i entering in the one-pion ex-
change N3LO current. The latter could be fitted to pion photo-production data on a single nucleon,
which however involve photon energies much higher than those relevant for the threshold processes
under consideration here, or related to hadronic coupling constants through resonance saturation.
We prefer to treat them as fitting parameters, assuming however d′21 = d′8/4 as suggested by ∆-
resonance dominance. We are then left with 4 parameters, two isoscalar and two isovector, that we
express as adimensional LECs dS/V

i ,

C′15 = dS
1/Λ

4 , d′9 = dS
2/Λ

2,

C′16 = dV
1 /Λ

4 , d′8 = dV
2 /Λ

2 , (4.1)

In Ref.[17] we fixed dS
i to the deuteron and isoscalar trinucleon magnetic moment, and dV

i to the np
thermal radiative capture cross section and isovector trinucleon magnetic moment, using accurate
nuclear wave functions obtained from the Hyperspherical Harmonic method [18]. We used the
Argonne v18 (AV18) [19] and the Idaho chiral N3LO [20] two-nucleon potential, supplemented
with the Urbana-IX [21] and chiral N2LO [22] three-nucleon interaction. We were then able to
obtain prediction in good agreement with experimental data for the thermal nd and n−3He radiative
capture cross sections (σ γ

nd and σ
γ

n−3He) and the photon circular polarization parameter Rc in the
capture of polarized neutrons on deuterons (we should point out that the adopted model for the
current included loop corrections to the short range contributions which instead turn out to be absent
[16]). Here we make use of the more recent N3LO chiral two-nucleon potential[23], available
for two values of the cutoff Λ = 500, 600 MeV, taking from this reference the LECs Ci entering
the current operators through the minimal coupling procedure. As before, the isoscalar LECs dS

i
are fixed from the deuteron and the isoscalar combination of the trinucleon magnetic moments,
resulting in the values displayed in Table 1. Eventhough the LEC of the contact term turns out
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Λ dS
1 10 ·dS

2
500 4.072 (2.522) 2.190 (-1.731)
600 11.38 (5.238) 3.231 ( -2.033)

Table 1: Extracted values of the isoscalar LECs from the deuteron and trinucleon isoscalar magnetic
moments for different values of the cutoff Λ, using the N3LO/N2LO chiral two/three nucleon potential
(AV18+UIX in parentheses) to generate the nuclear wave functions.
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Figure 3: Cumulative contributions to the deuteron and trinucleon (isoscalar) magnetic moments. The
bands represent the variation with the two nuclear Hamiltonian model.

Λ dV
1 (I) dV

2 (I) dV
1 (II) dV

2 (II) dV
1 (III) dV

2 (III)
500 10.36 (45.10) 17.42 (35.57) -13.30 (-9.339) 3.458 -7.981 (-5.187) 3.458
600 41.84 (257.5) 33.14 (75.00) -22.31 (-11.57) 4.980 -11.69 (-1.025) 4.980

Table 2: Extracted values for the isovector LECs as explained in the text. Notation as in Table 1.

to be rather large, the convergence pattern for these observables is reasonable, as shown in Fig. 3
(there are no contributions from N2LO and from the loops, which are isovector).

On the contrary, an analogous strategy to fix the isovector LECs from the np radiative capture
cross section and isovector trinucleon magnetic moment results in unreasonably large values for
dV

1,2 (denoted as set I, first column of Table 4), which totally spoil the convergence pattern. Instead,
in sets II and III, the LEC dV

2 is fixed by assuming ∆-resonance dominance,

dV
2 =

4µ∗hAΛ2

9m(m∆−m)
, (4.2)

where m∆−m = 294 MeV, hA/Fπ = fπN∆/mπ with f 2
πN∆

/(4π) = 0.35 from the ∆ width, and the
transition magnetic moment µ∗ = 3 n.m. from an analysis of pion photo-production data in the ∆

region. On the other hand, the LEC dV
1 multiplying the contact current is fitted to reproduce either

σnp in set II or µV in set III. Both alternatives still lead to somewhat large values for this LEC, but
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we find the degree of unnaturalness tolerable in this case. As we have remarked earlier, there are no
three-body currents at N3LO, and therefore it is reasonable to fix the strength of this two-nucleon
contact M1 operator by fitting a three-nucleon observable such as µV . Thus the set II (III) provides
a prediction for µV (σnp). Cumulative contributions to these observables are shown in Fig. 4. These
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Figure 4: Cumulative contributions to the isovector trinucleon magnetic moment and to the np radiative
capture cross sections. The black line indicates the experimental value. Notations as in Fig. 3.

predictions are within 2% for µV and 1% for σnp of the experimental values, and exhibit a weak
cutoff and Hamiltonian-model dependence.

5. Conclusions

Chiral perturbation theory, in conjunction with accurate ab-initio techniques to describe light
nuclei, allows to make sharp predictions for nuclear electromagnetic observables in the low-energy
domain. A recent investigation using quantum Montecarlo techniques, based on the model for the
current described in this contribution, addressed the magnetic moments and transitions in nuclei
with A≤ 9, reaching excellent agreement with experiments [24]. Static properties, including charge
and magnetic radii and magnetic moments, and elastic form factors of A = 2,3 nuclei were also
investigated [16, 25, 26].

We have described our formalism to derive the nuclear current and charge operators up to one
loop order of the chiral expansion, based on the requirement that, when iterated in the Lippman-
Schwinger equation, they lead to the same transition amplitude obtained within time-ordered per-
turbation theory, order by order in the chiral expansion. In contrast to the authors of Ref. [10, 11],
who use the unitary transformation method, we have not performed the complete renormalization
of the one-pion exchange diagrams, but the momentum dependence of the corresponding magnetic
moment operator turns out to be the same in the two formalisms. Further differences show up in
the pion-loop corrections to the short range charge operators.

The issue of the convergence pattern of the chiral expansion and of the naturalness of the
relevant LECs deserves further investigation, in particular for what concerns the role of the ∆

resonance and its possible inclusion within the effective theory [27].
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