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1. Introduction

The results presented in this talk are those essentially present in our recent publication, ref. [1]
with some updated information. In this talk, we present the method of unitarity bounds, recently
reviewed in ref. [2], which employs the general principles of unitarity and analyticity in order
to find stringent bounds on form factors. In particular, we will discuss applications to the pion-
Kaon form factor which is an important laboratory for testing the consistency of chiral perturbation
theory with modern inputs coming from lattice and with experimental information coming in the
form of measurements of the modulus and phase of the form factor along parts of the unitarity
cut. In this talk, we demonstrate that by deploying newly sharpened tools we are able to produce a
coherent picture that tests also some experimental determinations of shape parameters of the form
factors. We use these techniques to demonstrate that there are no nearby zeros which supports the
conclusions of dispersive representations in the literature. Due to space constraints, only a very
brief bibliography will be provided here and we direct the reader to our publications referred to
above for a more complete one.

2. Formalism

The pion-Kaon form factors of interest appear in the semi-leptonic decay of the kaon and in
the decay of theτ-lepton to a hadronic final state with a pion and kaon. The kaonsemi-leptonic
decay is described by the matrix element

〈π0(p′)|sγµu|K+(p)〉 =
1√
2
[(p′ + p)µ f+(t)+ (p− p′)µ f−(t)], (2.1)

where f+(t) is the vector form factor and the combination

f0(t) = f+(t)+
t

M2
K −M2

π
f−(t) (2.2)

defines the scalar form factor. The shape parameters of interest appear in the expansion aboutt = 0

fk(t) = f+(0)

(

1+ λ ′
k

t
M2

π
+

1
2

λ ′′
k

t2

M4
π

+ · · ·
)

, k = 0,+ (2.3)

In the aboveλ ′
k is the slope andλ ′′

k is the curvature parameter wherek = 0,+. To improve the
precision and to provide bounds on the shape parameters of the form factors, we use inputs coming
from certain low-energy theorems, perturbative QCD, lattice computations and chiral perturbation
theory, the phase and modulus of the form factors in the low-energy part of the unitarity cut.

The method of unitarity bounds starts with the consideration of an integral of the type:
∫ ∞

t+
dt ρ+,0(t)| f+,0(t)|2 ≤ I+,0, (2.4)

along the unitarity cut, whose upper bound is known from a dispersion relation, satisfied by a
certain QCD correlator. For the scalar form factor this reads

χ0(Q
2) ≡ ∂

∂Q2

[

Q2Π0(−Q2)
]

=
1
π

∫ ∞

t+
dt

tImΠ0(t)
(t + Q2)2 , (2.5)
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ImΠ0(t) ≥
3
2

t+t−
16π

[(t − t+)(t − t−)]1/2

t3 | f0(t)|2 , (2.6)

with t± = (MK ±Mπ)2. Analogous correlator involving the vector form factor is denoted byχ1(Q
2).

We can now use the conformal mapt → z̃(t)

z̃(t) =

√
t+−√

t+− t√
t+ +

√
t+− t

, (2.7)

that maps the cutt-plane onto the unit disc|z| < 1 in thez ≡ z̃(t) plane, witht+ mapped ontoz = 1,
the point at infinity toz = −1 and the origin toz = 0.1

Using this map, we cast eqn.(2.4) into a canonical form, incorporate phase and modulus in-
formation as well as the Callan-Treiman relations and finally employ a determinant for obtaining
bounds on the shape parameters and for finding regions of excluded zeros in the complext-plane
[2].

3. Inputs

The essential inputs of our formalism, the vectorχ1(Q2) and the scalarχ0(Q2) correlators, can
be calculated in perturbative QCD up to orderα4

s for Q2 >> Λ2
QCD We getχ1(2GeV) = (343.8±

51.6)×10−5 GeV−2 andχ0(2GeV) = (253±68)×10−6. An improvement can be achieved when
we implement theoretical and experimental information into the formalism of unitarity bounds.
The first improvement comes when we use the the value of vectorform factor at zero momentum
transfer. Recent determinations from the lattice givef+(0) = f0(0) = 0.964(5). We can also use
two low-energy theorems, namely soft-pion and soft-kaon theorems, for the improvement of the
bounds on the slope and curvature parameters in the scalar case. The soft-pion theorem relates
the value of the scalar form factor at first Callan-Treiman (CT) point ∆Kπ ≡ M2

K −M2
π to the ratio

FK/Fπ of the decay constants:

f0(∆Kπ) = FK/Fπ + ∆CT . (3.1)

Recent lattice evaluations withN f = 2 + 1 flavors of sea quarks giveFK/Fπ = 1.193± 0.006. In
the isospin limit,∆CT = −3.1×10−3 to one loop and∆CT ≃ 0 to two-loops in chiral perturbation
theory

At ∆̄Kπ(= −∆Kπ), a soft-kaon result relates the value of the scalar form factor to Fπ/FK

f0(−∆Kπ) = Fπ/FK + ∆̄CT . (3.2)

A calculation in ChPT to one-loop in the isospin limit gives∆̄CT = 0.03, but the higher order ChPT
corrections are expected to be larger in this case. As discussed in [1], due to the poor knowledge
of ∆̄CT , the low-energy theorem eqn.(3.2) is not useful for furtherconstraining the shape of theKℓ3

form factors at low energies. On the other hand, we obtain from the same machinery, the stringent
bound on the quantitȳ∆CT which is−0.046≤ ∆̄CT ≤ 0.014.

1The associated mathematical theory is that of Hardy Spaces and Analytic Interpolation Theory, see Ref.[2] and
also Irinel Caprini, talk given at this workshop.
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Further improvement of the bounds can be achieved if the phase of the form factor along the
elastic part of the unitarity cut is known from an independent source. In our calculations we use
below tin recent high precision phase-shift parametrizations (see ref. [1] for details). Abovetin
we takeδ (t) to be Lipschitz continuous, i.e., a smooth function approaching π at high energies.
The results are independent of the choice of the phase fort > tin. We can further improve the
bounds if the modulus of the form factor is known along the unitarity cut,t ≤ tin: we can shift the
branch point fromt± to tin by subtracting the low energy integral from the integral Eq.(2.4). In
order to estimate the low-energy integral, which is the value of the integral contribution fromt+
to tin,we use the Breit-Wigner parameterizations of| f+(t)| and | f0(t)| in terms of the resonances
given by the Belle Collaboration for fitting the rate ofτ → Kπν decay. The above leads to the
value 31.4×10−5 GeV−2 for the vector form factor and 60.9×10−6 for the scalar form factor.

By combining with the valuesI+,0, we obtain the new upper bound on the integral Eq. (2.4)
from tin to ∞, I′+ = (312±69)×10−5GeV−2 andI′0 = (192±90)×10−6.

4. Results

4.1 Shape parameters
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Figure 1: The allowed range for the slope of the scalar
form factor, when we include phase, modulus and the
CT constraint (yellow band). The grey band shows the
range without the CT constraint.
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Figure 2: Allowed domain for the slope and curva-
ture of the scalar form factor, using the normalization
f+(0) = 0.962, the valuef0(∆Kπ) = 1.193, and phase
and modulus information up totin = (1GeV)2.

In Figs. 1 and 2, the constraints for the scalar form factor are represented together with ex-
perimental information from various experiments. As shownin Fig. 1, the slopeλ ′

0 of the scalar
form factor, predicted by NA48 (2007) is not consistent withour predictions (yellow band) which
are obtained by taking into account the phase, modulus as well as the CT constraint. Nevertheless
our predicted range for the slope is well-respected by the recent 2011 analysis by NA48 [3] .

The value ofλ ′
0 for this new determination by the NA48 readsλ ′

0 = (15.6±1.2±0.9)×10−3.
On the theoretical side, the prediction of ChPT to two loops givesλ ′

0 = (13.9−0.4
+1.3±0.4)×10−3 and

λ ′′
0 = (8.0−1.7

+0.3)×10−4 which are consistent with our results within errors as shownin Fig. 2. For
the central value of the slopeλ ′

0 given above, the range ofλ ′′
0 is (8.24×10−4,8.42×10−4). The
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predictionsλ ′
0 = (16.00±1.00)×10−3, λ ′′

0 = (6.34±0.38)×10−4 are obtained from dispersion
relations. Comparison of the experimental results with ourconstraints for the vector form factor
were discussed in ref. [1]. We also note that the theoreticalpredictionsλ ′

+ = (24.9±1.3)×10−3,
λ ′′

+ = (1.6±0.5)×10−3 obtained from ChPT to two loops, andλ ′
+ = (26.05+0.21

−0.51)×10−3, λ ′′
+ =

(1.29+0.01
−0.04)× 10−3, andλ ′

+ = (25.49± 0.31)× 10−3, λ ′′
+ = (1.22± 0.14)× 10−3 obtained from

dispersion relations are consistent with the constraint. For more results, see [1].

4.2 Zeros

We also apply the technique to find regions on the real axis andin the complext-plane where
zeros are excluded. The knowledge of zeros is of interest, for instance, for the dispersive methods
(Omnès-type representations) and for testing specific models of the form factors. In particular,
an interesting discussion is presented on the role of zeros in ref. [4]. As can be seen from Figs.
3 and 4, nearby zeros distorts the form factors when dispersive parameterizations are used while
the zeros far away have no influence on the form factors. Our results rule out nearby zeros of
the type considered in ref. [4] for purposes of illustration. In the case of the vector form factors,
simple zeros are excluded in the interval−0.31GeV2 ≤ t0 ≤ 0.23GeV2 of the real axis, while
for the scalar form factor the range with no zeros is−0.91GeV2 ≤ t0 ≤ 0.48GeV2. If we also
impose the Callan-Treiman constraint, the scalar form factor cannot have simple zeros in the range
−1.81GeV2 ≤ t0 ≤ 0.93GeV2. We can also extend our technique to derive regions in the complex
plane where the form factors can not have zeros. The formalism rules out zeros in the physical
region of the kaon semileptonic decay. In the case of complexzeros, we have obtained a rather
large region where they cannot be present. For the scalar andvector form factors, Figs. 5 and 6
respectively show the region where complex zeros are excluded. For more results, see [1].
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Figure 3: Influence of timelike zeros (from ref. [4])
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Figure 4: Influence of spacelike zeros (from ref. [4])

The results in our formalism are independent of phase information in the inelastic region and
leads without any assumptions to a rather large domain wherecomplex zeros are excluded.
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Figure 5: Domain without zeros for the scalar form
factor: the small domain is obtained without including
phase and modulus in the elastic region, the bigger one
using phase, modulus and CT constraint.

Figure 6: Domain without zeros for the vector form
factor: the small domain is obtained without including
phase and modulus in the elastic region, the bigger one
using phase and modulus.

5. Conclusion

We have derived constraints on the shape parameters of the form factors ofKl3 decay which is
the best source for the extraction of CKM matrix elementVus. The results are especially stringent
in the case of the scalar form factor. The most recent resultsfrom NA48 [3] are consistent with our
prediction for the slope of scalar form factor and restrict the range of the slope to∼ 0.01−0.02. We
have also excluded zeros in a rather large domain at low energies both for the scalar and vector form
factor. The Callan-Treiman input provides an additional constraint in the case of the scalar form
factor and as a result excludes a larger domain of the energy plane where zeros can exist. Thus,
this work represents a powerful application of the theory ofunitarity bounds, which relies not so
much on experimental information, but on theoretical inputs from perturbative QCD, low energy
theorems and lattice calculations. It provides a powerful consistency check on determinations of
shape parameters from experimental analyses.
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