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1. Introduction

The results presented in this talk are those essentialgeptén our recent publication, ref. [1]
with some updated information. In this talk, we present tlethod of unitarity bounds, recently
reviewed in ref. [2], which employs the general principldsuaitarity and analyticity in order
to find stringent bounds on form factors. In particular, wd discuss applications to the pion-
Kaon form factor which is an important laboratory for tegtthe consistency of chiral perturbation
theory with modern inputs coming from lattice and with exyemtal information coming in the
form of measurements of the modulus and phase of the forrorfatbng parts of the unitarity
cut. In this talk, we demonstrate that by deploying newlyrgbaed tools we are able to produce a
coherent picture that tests also some experimental detations of shape parameters of the form
factors. We use these techniques to demonstrate that tleen® aearby zeros which supports the
conclusions of dispersive representations in the liteeatiDue to space constraints, only a very
brief bibliography will be provided here and we direct thader to our publications referred to
above for a more complete one.

2. Formalism

The pion-Kaon form factors of interest appear in the semmiielsic decay of the kaon and in
the decay of tha-lepton to a hadronic final state with a pion and kaon. The lsami-leptonic
decay is described by the matrix element

() [syuuK* () = k“‘”‘” £+ (p— Pt (1)) (2.1)

wheref (1) is the vector form factor and the combination

t

folt) = 110+ oy -0 (22)

defines the scalar form factor. The shape parameters ofgtteppear in the expansion abbst 0

1., t2
may:f(m<1+AkM2+2AkM4 ~>, k=0,+ (2.3)

In the aboveA, is the slope an@, is the curvature parameter wheke= 0,4-. To improve the
precision and to provide bounds on the shape parameters furtin factors, we use inputs coming
from certain low-energy theorems, perturbative QCD,datttomputations and chiral perturbation
theory, the phase and modulus of the form factors in the loargy part of the unitarity cut.

The method of unitarity bounds starts with the considenatiban integral of the type:

| dtpa®lfio®F < 1o, 24

along the unitarity cut, whose upper bound is known from gelision relation, satisfied by a
certain QCD correlator. For the scalar form factor this sead
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_ o 1/2
3ttt [(t t+)(tt3 t)] | fo(t)[2, (2.6)

> =
|m|_|0(t) = 57167

witht. = (Mg &=My)?. Analogous correlator involving the vector form factor endted by, (Q?).
We can now use the conformal map- Z(t)

L eV
z(t)_\/£+—t % 2.7)

that maps the cutplane onto the unit disiz| < 1 in thez= Z(t) plane, witht, mapped onta= 1,
the point at infinity taz= —1 and the origin te= 0.1

Using this map, we cast eqn.(2.4) into a canonical form,ripa@te phase and modulus in-
formation as well as the Callan-Treiman relations and fynathploy a determinant for obtaining
bounds on the shape parameters and for finding regions aidedtlzeros in the compléxplane

[2].

3. Inputs

The essential inputs of our formalism, the vegtefQ?) and the scalaxo(Q?) correlators, can
be calculated in perturbative QCD up to ordgf for Q* >> Agcp We getx1(2GeV) = (3438+
51.6) x 10°5GeV 2 andxo(2GeV) = (2534 68) x 10°5. An improvement can be achieved when
we implement theoretical and experimental informatioro itiie formalism of unitarity bounds.
The first improvement comes when we use the the value of vémtor factor at zero momentum
transfer. Recent determinations from the lattice div€0) = fp(0) = 0.964(5). We can also use
two low-energy theorems, namely soft-pion and soft-kaaotéms, for the improvement of the
bounds on the slope and curvature parameters in the scalar dde soft-pion theorem relates
the value of the scalar form factor at first Callan-Treimai)@oint Ak ; = MZ — M2 to the ratio
Fx /Fr of the decay constants:

fo(Akr) = Fc/Fr+Act. (3.1)

Recent lattice evaluations witl; = 2 + 1 flavors of sea quarks g /F; = 1.193+ 0.006. In
the isospin limitAct = —3.1x 102 to one loop and\ct ~ 0 to two-loops in chiral perturbation
theory

At EK,T(: —NAkr), a soft-kaon result relates the value of the scalar fornofaotF,;/F«

fo(—Akn) = Fr/Fx +Act. (3.2)

A calculation in ChPT to one-loop in the isospin limit gi\é@T =0.03, but the higher order ChPT
corrections are expected to be larger in this case. As disdus [1], due to the poor knowledge
of Act, the low-energy theorem eqgn.(3.2) is not useful for furtt@rstraining the shape of tikes
form factors at low energies. On the other hand, we obtaim fitee same machinery, the stringent
bound on the quantiticr which is —0.046 < Act < 0.014.

1The associated mathematical theory is that of Hardy Spaw#malytic Interpolation Theory, see Ref.[2] and
also Irinel Caprini, talk given at this workshop.
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Further improvement of the bounds can be achieved if thegpbthe form factor along the
elastic part of the unitarity cut is known from an independssurce. In our calculations we use
below ti, recent high precision phase-shift parametrizations (ségX] for details). Abovei,
we taked(t) to be Lipschitz continuous, i.e., a smooth function apphoag 1T at high energies.
The results are independent of the choice of the phase fof,. We can further improve the
bounds if the modulus of the form factor is known along thearty cut,t < tj,: we can shift the
branch point fromt.. to ti, by subtracting the low energy integral from the integral Eg14). In
order to estimate the low-energy integral, which is the @alfithe integral contribution frorh_
to ti,,we use the Breit-Wigner parameterizations| ©f(t)| and|fo(t)| in terms of the resonances
given by the Belle Collaboration for fitting the rate of— Kmnv decay. The above leads to the
value 314 x 10 °GeV 2 for the vector form factor and 6®x 106 for the scalar form factor.

By combining with the values, o, we obtain the new upper bound on the integral Eq. (2.4)
from tiy to oo, I’ = (3124 69) x 1075GeV2 andl} = (192+ 90) x 107S.

4. Results

4.1 Shape parameters
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Figure 1: The allowed range for the slope of the scalar Figure 2: Allowed domain for the slope and curva-
form factor, when we include phase, modulus and theture of the scalar form factor, using the normalization
CT constraint (yellow band). The grey band shows thef, (0) = 0.962, the valudo(Ak ) = 1.193, and phase
range without the CT constraint. and modulus information up tg, = (1GeV)?.

In Figs. 1 and 2, the constraints for the scalar form facterrapresented together with ex-
perimental information from various experiments. As showfig. 1, the slope\ of the scalar
form factor, predicted by NA48 (2007) is not consistent vatlr predictions (yellow band) which
are obtained by taking into account the phase, modulus dsawéie CT constraint. Nevertheless
our predicted range for the slope is well-respected by tbeme2011 analysis by NA48 [3] .

The value ofA{ for this new determination by the NA48 readis= (15.641.2+0.9) x 10~3.
On the theoretical side, the prediction of ChPT to two loopesi) = (13.9; 95 4+0.4) x 10-3 and
A§ = (8.0;5%) x 10-* which are consistent with our results within errors as showRig. 2. For
the central value of the slop¥, given above, the range af} is (8.24x 10-4,8.42x 10~4). The
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predictionsA} = (16.00+ 1.00) x 103, A} = (6.34+:0.38) x 10~* are obtained from dispersion
relations. Comparison of the experimental results witha@amstraints for the vector form factor
were discussed in ref. [1]. We also note that the theoregicadictionsA’ = (24.9+1.3) x 1073,
A’ = (1.6+0.5) x 102 obtained from ChPT to two loops, aid = (26.057921) x 1073, A/ =
(1.297092) x 1073, andA/. = (2549+0.31) x 1073, A” = (1.22+0.14) x 103 obtained from
dispersion relations are consistent with the constraiot.nkore results, see [1].

4.2 Zeros

We also apply the technique to find regions on the real axisratite complex-plane where
zeros are excluded. The knowledge of zeros is of interesingtance, for the dispersive methods
(Omnés-type representations) and for testing specific marfehe form factors. In particular,
an interesting discussion is presented on the role of zerosfi [4]. As can be seen from Figs.
3 and 4, nearby zeros distorts the form factors when disgeparameterizations are used while
the zeros far away have no influence on the form factors. Qaulteerule out nearby zeros of
the type considered in ref. [4] for purposes of illustratidn the case of the vector form factors,
simple zeros are excluded in the intervad.31Ge\? < t; < 0.23Ge\? of the real axis, while
for the scalar form factor the range with no zeros-i8.91Ge\? < ty < 0.48Ge\~. If we also
impose the Callan-Treiman constraint, the scalar formofazannot have simple zeros in the range
—1.81Ge\? <ty < 0.93Ge\?. We can also extend our technique to derive regions in theom
plane where the form factors can not have zeros. The formaiides out zeros in the physical
region of the kaon semileptonic decay. In the case of compdegs, we have obtained a rather
large region where they cannot be present. For the scalavetdr form factors, Figs. 5 and 6
respectively show the region where complex zeros are egdlugor more results, see [1].
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Figure 3: Influence of timelike zeros (fromref. [4])  Figure4: Influence of spacelike zeros (from ref. [4])

The results in our formalism are independent of phase irdtion in the inelastic region and
leads without any assumptions to a rather large domain wdoemgplex zeros are excluded.
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Figure 5: Domain without zeros for the scalar form Figure 6: Domain without zeros for the vector form
factor: the small domain is obtained without including factor: the small domain is obtained without including
phase and modulus in the elastic region, the bigger onphase and modulus in the elastic region, the bigger one
using phase, modulus and CT constraint. using phase and modulus.

5. Conclusion

We have derived constraints on the shape parameters ofrthddotors ofK,3 decay which is
the best source for the extraction of CKM matrix elemdgt The results are especially stringent
in the case of the scalar form factor. The most recent refolts NA48 [3] are consistent with our
prediction for the slope of scalar form factor and resthetitange of the slope to 0.01—0.02. We
have also excluded zeros in a rather large domain at low exsdogth for the scalar and vector form
factor. The Callan-Treiman input provides an additionaistrmaint in the case of the scalar form
factor and as a result excludes a larger domain of the endagye pvhere zeros can exist. Thus,
this work represents a powerful application of the theorymtarity bounds, which relies not so
much on experimental information, but on theoretical ispubm perturbative QCD, low energy
theorems and lattice calculations. It provides a powerfuisistency check on determinations of
shape parameters from experimental analyses.

References

[1] G. Abbas, B. Ananthanarayan, |. Caprini and I. Sentitemnssong, Phys. Rev. B2, 094018 (2010).
[arXiv:1008.0925 [hep-ph]].

[2] G. Abbas, B. Ananthanarayan, I. Caprini, |. Sentitemmssdng and S. Ramanan, Eur. Phys. J5A
389 (2010). [arXiv:1004.4257 [hep-ph]].

[3] M. Veltri, arXiv:1101.5031 [hep-€ex].

[4] V. Bernard, M. Oertel, E. Passemar and J. Stern, Phys.[R80, 034034 (2009). [arXiv:0903.1654
[hep-phl].



