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1. Introduction

Our current theoretical comprehension of the standard model of particle physics relies on some
basic input parameters in order to unfold its predictive power to describe the various processes ob-
served in nature at low and high energies. These parameters have to be determined by matching
theory to experimental data. Regarding QCD there are the mass parameters {mq,q = u,d,s,c,b, t}
for the Nf = 6 quark flavors and the strong coupling constant g2

s . To give any meaning to the
theory and its parameters one needs to apply a well-suited regularization and renormalization pro-
cedure. By doing so the input parameters become scale-dependence quantities g2

s (µ) and mq(µ).
An equivalent choice of input parameters is given by the Lambda parameter

Λ = µ [b0g2
s (µ)]

−b1/(2b2
0) e−1/[2b0g2

s (µ)]× exp
{
−
∫ gs(µ)

0
dg
[

1
β (g)

+
1

b0g3 −
b1

b2
0g

]}
(1.1)

and the renormalization group invariant (RGI) quark mass(es)

Mq = mq(µ) [2b0g2
s (µ)]

−d0/(2b0)× exp
{
−
∫ gs(µ)

0
dg
[

τ(g)
β (g)

− d0

b0g

]}
. (1.2)

In a massless renormalization scheme, such as MS, the RGI quark masses are scheme independent
while Λ is still a scheme dependent constant. However, the resulting scheme dependence is trivial
since two well-behaved massless schemes are exactly related by the ratio of their Λ parameters that
can be calculated analytically. Hence the Mq and Λ are fundamental parameters of QCD.

Here we present results for the scale parameter Λ and the strange quark mass Ms in two-flavor
QCD as the outcome of a long term project by the ALPHA Collaboration [1]. We use the lattice
regularization of QCD with Nf = 2 degenerate, non-perturbatively improved Wilson fermions and
plaquette gauge action. Moreover, the Schrödinger functional (SF) is used as intermediate massless
finite-volume renormalization scheme to bridge large scale ratios non-perturbatively via a recursive
finite-size step-scaling procedure in the continuum. The SF provides a natural non-perturbative
definition of the strong coupling g2

SF that runs with the finite extent of the box, µ = 1/L. Starting
from a typical low energy scale Lmax ∼ 0.5fm, the scale evolution of this coupling has been worked
out in two-flavor QCD [2] where PT only enters at scales of O(100GeV) to connect g2

SF to its
Lambda parameter, Λ

(2)
SF . In this way the perturbative uncertainty becomes negligible. Following a

similar strategy, also the connection of any renormalized quark mass mq(Lmax) as computed in the
low-energy regime of QCD (µ = 1/Lmax) to its RGI quark mass Mq is known [3].

To convert these results into physical units demands the determination of the lattice scale
which has been done only recently [1] due to the effort of the Coordinated Lattice Simulations
(CLS) [4] consortium. In order to keep control over all systematic errors that appear when QCD is
regularized on a lattice, one needs to balance physical scales that typically appear in a simulation
(a�m−1

π , . . .� L) against the time that is spent to produce statistically independent configurations
while attaining a good signal-to-noise ratio for the observables of interest. Accordingly, the lattice
community is not yet able to perform simulations at the physical point where quark mass ratios
correspond to the physical situation while fulfilling a � 0.1fm and mπL > 4.1 The former is

1these criteria vary a bit from one collaboration to another
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Figure 1: Left: Sketch of our two strategies to approach the physical point using partially quenched χPT.
Right: Resulting chiral extrapolation of the kaon decay constant in lattice units, FK = a fK, for three values
of the lattice spacing corresponding to β = 5.2,5.3,5.5. Open symbols & dashed lines belong to strategy 1.

needed to ensure a save continuum extrapolation a→ 0 and the latter to get rid of finite-size effects
which are exponentially suppressed in mπL if light meson physics is concerned. To this end CLS
performed simulations with light quark masses corresponding to pseudoscalar masses mπ > mphys

π ,
such that beside the continuum extrapolation chiral perturbation theory (χPT) has to be invoked.
For the fruitful interrelation between lattice and χPT community see for instance [5].

2. CLS ensembles and scale setting

We choose the kaon decay constant fK as dimensionful observable to set the physical mass
scale for our lattice computations. As long as all physical effects are taken into account it does
not matter what quantity is used. However, since our simulations are restricted to two dynamical
light quarks we have an intrinsic systematic uncertainty due to the quenched strange quark that is
impossible to determine a priory. Its main advantages are: i) fK is experimentally accessible within
the envisaged precision2, ii) at small sea quark masses χPT provides a theory for the dependence
of fK on mπ and iii) ground state properties in the meson sector can be determined without doubt.

In the following we will use two complementary strategies to approach the physical point. To
this end we parametrize our observables in terms of input parameters κ1 and κ3 for the light and
strange quark mass respectively. Since there is no perfect way to approach the physical point one
has to impose a scaling condition made of physical quantities that take their experimental values at
the physical point. With our choice of the scale parameter it is natural to define

RK(κ1,κ3) =
[
mK(κ1,κ3)

/
fK(κ1,κ3)

]2
, Rπ(κ1,κ3) =

[
mπ(κ1)

/
fK(κ1,κ3)

]2
, (2.1)

and their values at the physical point, Rphys
K and Rphys

π , given through

mphys
π = 134.8MeV , mphys

K = 494.2MeV , f phys
K = 155MeV . (2.2)

Here they are given in the isospin symmetric limit with QED effects removed [6]. As the strange
quarks mass on the lattice depends on the light quark mass chosen in the dynamical fermion simu-
lations where mπ(κ1)> mphys

π , κ3 becomes a function of κ1. Beside a theoretically well-motivated
extrapolation formula for the quantity under consideration, fK, one would like to ease the extrapo-
lation such that fK(κ1,κ3) depends only little on the distance to the physical point.

2considering the CKM matrix element Vus known
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Figure 2: Left: Non-perturbative running of the strong coupling in the SF [2]. Right: Continuum extrapola-
tion of L1 fK as function of F2

K = (a fK)
2 after scale setting using large volume (CLS) ensembles.

1st strategy: We employ NLO partially quenched SU(3) χPT as in [7] and impose the condition

RK
(
κ1,h(κ1)

)
= Rphys

K . (2.3)

This defines a trajectory where fK varies only little in χPT according to

fK
(
κ1,h(κ1)

)
= f phys

K

[
1+LK(y1,yK)+(α4− 1

4)(y1− yπ)+O(y2)
]
,

LK(y1,yK) = LK(y1,yK)−LK(yπ ,yK) , (2.4)

LK(y1,yK) =−1
2 y1 log(y1)− 1

8 y1 log(2yK/y1−1) ,

where the parameters yi take their typical form in a chiral expansion:

y1 =
1
2

[
mπ(κ1)

/
2π fK

(
κ1,h(κ1)

)]2
, yπ = 1

2

[
mphys

π

/
2π f phys

K

]2
, yK = 1

2

[
mphys

K

/
2π f phys

K

]2
.

Here a big advantage is that mK≈mphys
K or correspondingly Ms+Mlight≈ const, such that mK(κ1,κ3)

is not larger than its physical value which increases the chance of being inside the domain of ap-
plicability of the chiral expansion. The left panel of Fig. 1 shows a sketch of this trajectory in the
(Mlight,Ms)-plane and the corresponding chiral extrapolation, eq. (2.4), in the right panel.

2nd strategy: Here we intend to use NLO SU(2) χPT [8] for the chiral extrapolation which
amounts to an extrapolation in the light quark mass while keeping the strange quark mass constant.
To do so we tune κ3 such that the PCAC mass am34, with κ4 = κ3, has a prescribed value µ , i.e.
am34(κ1,κ3) = µ implicitly defines a function κ3 = s(κ1,µ) at which am34 becomes independent of
κ1. The value of µ at the physical point needs to be known, thus we first extrapolate M2

K = (amK)
2

and FK = a fK at fixed µ according to

FK
(
κ1,s(κ1,µ)

)
= p(µ)

[
1− 3

8 [y1 log(y1)− yπ log(yπ)]+αf(µ)(y1− yπ)+O(y2
1)
]
,

M2
K
(
κ1,s(κ1,µ)

)
= q(µ)

[
1+αm(µ)(y1− yπ)+O(y2

1)
]
, (2.5)

to y1 = yπ . One obtains the q(µ), p(µ) as polynomials in the neighborhood of µ = µs where
q(µ)/p(µ)2 = RK attains its physical value. Solving numerically for µs gives a = p(µs)/ f phys

K .

Results: With these two strategies we finally arrive at the three lattice spacings in physical units

a/fm = 0.0755(9)(7) , 0.0658(7)(7) , 0.0486(4)(5) , (2.6)

corresponding to values of the bare gauge couplings β = 5.2,5.3,5.5, respectively. We have
checked that higher order terms are small and include only data in our final analysis that fulfills
y1 < 0.1. The second error is systematic and given by the difference of the two strategies.
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3. Computation of the Lambda parameter

After the discussion in the previous section we know the scale in our large volume lattice
simulations and thus are able to perform continuum extrapolation of other quantities such as the
Lambda parameter where the master formula of the ALPHA collaboration for Nf = 2 reads

Λ
(2)
MS
fK

=
1

L1 fK
×Λ

(2)
SF L1×

Λ
(2)
MS

Λ
(2)
SF

. (3.1)

Accordingly Λ
(2)
MS

is given in units of the scale setting parameter fK. It is traditionally decomposed
into different parts that are all determined independently in the continuum limit of QCD. The ratio
Λ
(2)
MS

/Λ
(2)
SF = 2.382035(3) [9] connects the MS scheme to the Schrödinger functional scheme, since

in the latter the RG running of the strong coupling is non-perturbatively known [2]. The left panel
of figure 2 shows the corresponding scale dependence of the strong coupling in the SF plotted
against the inverse of LΛ

(2)
SF . For additional details we have to refer the reader to [2].

In the SF the renormalization scale is given by the inverse box length, µ = 1/L, which is
implicitly fixed through a prescribed value of the non-perturbatively renormalized strong coupling
g2

SF(L) at that scale. In our case it has been kept fix at g2
SF = 4.484, corresponding to a typical

hadronic length scale L = L1 ∼ 0.4fm which allows to make contact to physical units in eq. (3.1).
Re-evaluating the data from ref. [2] at this specific value of the SF coupling leads to Λ

(2)
SF L1 =

0.264(15) in the continuum.
Due to the results reported in the previous section it recently has become possible to also

evaluate the last missing and most expensive piece in the computation of the Lambda parameter.
Computing L1 fK actually means to perform the continuum extrapolation of [L1/a]× [a fK] where
L1/a is the volume in lattice units – implicitly fixed by g2

SF(L1) = 4.484 – and a fK to be taken from
lattice QCD simulations at the physical pion mass. The set of CLS ensembles that have been used
in the scale setting are roughly described by Lmπ ≥ 4, a < 0.08fm, mπ . 500MeV. Again using
the results of FK = a fK from the two complementary strategies described before we obtain in the
continuum limit

L1 fK = 0.315(8)(2) . (3.2)

Its very flat continuum extrapolation in F2
K is shown in the right panel of figure 2. The first error is

statistical while the second error is due two the systematic uncertainty from the scale setting; here
the difference of L1 fK between strategy 1 and strategy 2. Combining all pieces in the computation
of the Lambda parameter finally leads to

Λ
(2)
MS

= 310(20)MeV . (3.3)

4. Computation of the strange quark mass

To compute the strange quark’s mass in physical units in two-flavor QCD we express the RGI
quark mass in terms of the scale setting parameter and apply a similar decomposition as in the case
of the Lambda parameter:

Ms

fK
=

M
m(L1)

× ms(L1)

fK
⇒ mMS

s (µ)

fK
=

mMS(µ)

M
×Ms

fK
. (4.1)
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Figure 3: Top: Non-perturbative running
of the quark mass in the SF [3]. Bottom:
Continuum extrapolation of the strange
quark mass.

The first universal continuum factor represents the
non-perturbative RG running of the quark mass in the
SF scheme from the same scale as before. The run-
ning is already known [3] and shown in the top panel
of figure 3. Re-evaluating the data at this scale gives

M
m(L1)

= 1.308(13). Computing the second factor in
large volume is most natural using strategy 2. Its con-
tinuum extrapolation is plotted in figure 3 together with
the one from strategy 1. We observe rather large cutoff
effects and obtain ms(L1)

fK
= 0.678(12)(5). Combining

both numbers and converting to physical units via f phys
K

from eq. (2.2) we obtain the RGI strange quark mass:

Ms = 138(3)(1)MeV . (4.2)

The conversion of our result to the MS scheme is the
only part of the computation where we have to take
recourse to perturbation theory. Using our value for
the Lambda parameter, equation (3.3), and the method
described in [3] that employs the 4-loop beta func-
tion and mass anomalous dimension in the perturbative

running we obtain the factor mMS(µ=2GeV)
M = 0.740(12)

that connects Ms to

mMS
s (2GeV) = 102(3)(1)MeV . (4.3)

This result also includes the statistical uncertainty of Λ
(2)
MS

. For all the additional details that could
not be covered here we refer the interested reader to [1].
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