PROCEEDINGS

OF SCIENCE

Recent progress in staggered chiral perturbation
theory

Jon Bailey, Weonjong Lee*, and Boram Yoon,
Lattice Gauge Theory Research Center, CTP, and FPRD,
Department of Physics and Astronomy,

Seoul National University, Seoul, 151-747, South Korea
E-mail: wlee@snu.ac.kr

Hyung-Jin Kim,
Physics Department, Brookhaven National Laboratory, Upton, NY11973, USA
E-mail: windy510@gmail.com

SWME Collaboration

We present a review on recent progress in staggered chiral perturbation theory (SChPT). In the last
decade, the scope of the application of SChPT has been extended beyond the level of calibration
into the region of prediction with high precision. SChPT becomes an essential tool to do the data
analysis reliably for physical observables calculated using improved staggered fermions. Here, we
focus on the following examples: pion spectrum, pion decay constants, €, and T — 7 scattering

amplitudes. In each subject, we review the recent progress and future prospects.
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1. Introduction

One of the most popular methods to put quarks on the lattice is the staggered fermion formal-
ism. Staggered fermions and their improved versions preserve a part of the full chiral symmetry
exactly and have a superior advantage of the cheapest cost to run on computers. However, stag-
gered fermions are born with 4 tastes per flavor by construction. The disadvantage is that the SU(4)
taste symmetry is broken at finite lattice spacing (a > 0), which is recovered only in the contin-
uum limit (a = 0). In this paper, we review recent progress in staggered chiral perturbation theory
(SChPT) which is designed to describe the chiral property of the physical observables calculated
using improved staggered fermions.

2. Staggered Chiral Perturbation Theory

It is always possible to expand the lattice fermion action in powers of the lattice spacing a,
which is quite useful to improve the action using the Symanzik program. In this expansion, the
leading terms are the continuum QCD action, and the higher order terms contain the effect of
lattice artifacts. SChPT is a kind of chiral perturbation theory to describe the chiral properties of
physical observables calculated using the improved staggered fermions [1]. Hence, we map the
lattice QCD action into a series in powers of a”. The leading terms are the same as the continuum
chiral perturbation theory. And the a” terms can map into the effective potential terms, which are
of the same order as the leading terms in the power counting rules of p* ~ m2 ~ my ~ a*. Here,
note that part of the power counting rules come directly from the numerical calculation of the pion
multiplet spectrum on the lattice as in Refs. [2, 3]. Hence, effectively we may say that SChPT
corresponds to a dual expansion in p? ~ m2 ~ my and a?. Since it is always possible to determine
the complete set of operators at any given order in ¢’ directly from the lattice symmetry group,
we can say that SChPT incorporates all the tastes symmetry breaking effects into a dual series
expansion order by order. As an accidental byproduct, we proved that the pion spectrum respects
the SO(4) taste symmetry out of the full SU(4) symmetry at the leading order [1, 4], which is often
called partial symmetry restoration. It turns out that the accidental SO(4) symmetry is a quite good
approximation of the pion multiplet spectrum calculated using improved staggered fermions, as
shown in Ref. [2, 3].

The continuum QCD physics does not have taste degrees of freedom at all. Hence, for each
sea quark loop, we need to reduce the number of tastes down to 1. An efficient method to do this
job is the rooting prescription. At finite lattice spacing where the taste symmetry is broken, the
rooting leads to a non-trivial unphysical effect [5]. Here, we assume that this effect is taken care of
properly in SChPT through the replica trick as suggested in Ref. [6], which is strongly supported
by the numerical results in Ref. [7].

The SChPT Lagrangian

Zm%
— (

2
Lo :%Tr(BHZ(?“ZT) — %uszr(MZ—i—MZT) + U+D;+8))?+a*V 2.1

where M is a quark mass matrix diag(m,, mg, ms) ® &, and ¥ is the effective potential which
reflects the effect of taste symmetry breaking at ¢(a?). This form of the SChPT Lagrangian was
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first proposed in Ref. [1] for a single flavor, later extended to multiple flavors in Ref. [4], and further
extended to the next-to-leading order (NLO) in Ref. [8].

3. Application of SChPT

During the last decade, SChPT has become a standard tool to obtain the fitting functions for
data analysis of lattice calculations done using improved staggered fermions. It has been applied to
the pion spectrum, pion decay constants, Bx and its BSM (beyond the standard model) corrections,
decay constants of the heavy-light mesons, semileptonic form factors of the heavy-light mesons,
and so on. Hence, it becomes impossible to cover the ingredients of interest over the whole subject
in a few pages. Instead, we will select a few topics and focus on them to review the recent progress.
Meanwhile, we also present the future prospects in these subjects.

3.1 Pion masses and quark masses

Pions made of staggered quarks can have flavor and taste structure 7y @ &, where Ty will be
Gell-Mann matrices in the case of SU(3) flavor symmetry and &, are the generators of the SU(4)
taste symmetry. For simplicity of explanation, we choose the 7 flavor to fix the 7y matrix. Then
for a given ™, we have 16 choices of &: one (&) belongs to a singlet irrep and the remaining 15
belong to an adjoint irrep of SU(4). The Goldstone pion corresponding to an exactly conserved
axial current has the taste of & € 15 adjoint irrep. The rest of the pions with taste not equal to &s
are called non-Goldstone pions because the corresponding axial current is not conserved at finite
lattice spacing.

At the leading order (LO), it was proved that the pion multiplet spectrum respects the SO(4)
taste symmetry [1, 4], which turns out to be a very good symmetry. This indicates that there are 5
irreps in the pion multiplet spectrum. At NLO, it was proved that the SO(4) symmetry is broken
down to SW4' [1, 8]. Hence, we have 8 irreps for the pion multiplet spectrum at NLO.

For the Goldstone pions, the NLO chiral logs were obtained in Ref. [4]. This calculation was
extended to the non-Goldstone pions in Ref. [9]. At present, the SWME collaboration works on
the mission to extend the NLO calculation to mixed actions such as HYP staggered valence quarks
with asqtad sea quarks.

3.2 Pion decay constants

Calculation of pion decay constants on the lattice has multiple targets. The first is that we can
determine fy, fx, fx/fx ratio, which lead to a precise determination of V,,;. The second is that,
combined with the pion spectrum, it can determine Gasser-Leutwyler low energy constants and
chiral condensates.

There has been an attempt to explore the non-Goldstone pion sectors using the pion decay
constants [10]. Recent progress in lattice calculation of pion decay constants are mainly focused
on the Goldstone pion sector [7]. The NLO corrections in SChPT were obtained in Ref. [11].
This work has been recently extended to the non-Goldstone pion sectors in Ref. [12]. The SWME
collaboration plans to extend this further to the mixed action case.

1SW; is a finite subgroup of the SO(4) group. The SWy is in the diagonal of the direct product of the taste and
Euclidean SO(4) symmetries.
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3.3 Indirect CP Violation and Bg

The indirect CP violation observed in the neutral kaon system in nature is parametrized by &g,
which is measured in experiment with extremely high precision as follows,

ex = (2.2284£0.011) x 107> x €% ¢ = (43.5240.05)°. (3.1)

It is also possible to calculate &k directly from the standard model. In the standard model, ¢ can
be expressed in terms of Bg and V., [13]. Here, By is a highly non-perturbative parameter which
can be determined reliably only using lattice QCD. In the case of V,, there are two independent
methods to obtain from the experiment: one is the exclusive decay channel and the other is the
inclusive decay channel. The exclusive method is simple and heavily relies on lattice QCD, whereas
the inclusive method is very complicated and relies highly on QCD sum rules.

In Ref. [14], the NLO corrections to Bk are obtained using the SU(3) SChPT. Here, they
assumed that the external kaons have the same taste as the Goldstone pions of the staggered fermion
formalism, which simplifies the technical aspects of calculation a lot. This work has been extended
to the mixed action case and the SU(2) case in Ref. [15]. In addition, it turns out that the mixed pion
(composed of valence quark and sea antiquark) contribution to Bx completely cancels off between
the numerator and the denominator at NLO, which makes Bg a gold-plated observable in lattice
QCD with a mixed action [15].

Results of the SU(2) SChPT in Ref. [15] provide the fitting functional form which is used for
the lattice data analysis for Bx. Recent results for Bg [16, 17] indicate that there exists a substantial
gap of =~ 30 between the standard model prediction from lattice QCD and the experimental value
of &k in the exclusive V., channel [13]. This gap may soon become a probe to identify physics
beyond the standard model (BSM) by constraining models of new physics. There are, in general,
4 additional four-fermion operators which can come from the BSM physics. These four operators
can be parametrized into four B-parameters: B; (i = 2,3,4,5). Recently, the chiral behavior of the
BSM B-parameters is presented at NLO in SChPT [18]. This work provides the fitting functional
form which is used for the data analysis for the BSM B-parameters in Ref. [19].

3.4 7 — 7 scattering and phase shift

Let us consider w — 7 scattering in the staggered fermion formalism. By construction, there
are five non-degenerate channels of two pion states in a singlet irrep of the SU(4) taste symmetry
instead of a single two pion state as in the case of Wilson-like fermions. In other words, the five
two pion states are

Hence, we have to consider at least 5 x 5 S-matrix in staggered fermion formalism to calculate
the w — & scattering phase shift in the taste singlet channel. Recently, Hansen and Sharpe pro-
vided a prescription which allows us to handle the multi-channel scattering and decay problems in
Ref. [20]. In this prescription, they assume that the multi-channel S-matrix is unitary.

In the staggered fermion formalism, we use the rooting method in the sea quark loops in
vacuum polarization diagrams. Since the SU(4) taste symmetry is broken at finite lattice spacing,
we know that the rooting makes it non-unitary to calculate the = — 7 scattering diagrams using
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staggered fermions. This is bad news in itself. However, the good news is that we can calculate
those terms which violate unitarity of the S-matrix order by order in SChPT. The strategy is that
we fit the data to the functional form derived in SChPT and remove the unwanted part of unitarity
violation terms by hand, and we use the remaining part, which corresponds to the unitary S-matrix.
Then we can apply the Hansen-Sharpe formula to obtain the scattering phase shifts.

At present, the SWME collaboration is working on the first stage of how to dissect the unitarity
violation part from the 7 — 7 scattering amplitude.

physics ‘ Goldstone | Non-Goldstone ‘ mixed ‘ numerical

m,zr v v AN v
fr v v AN v
Bg v X v v
T—T X A
K—nn X X X
Vep v X v

Table 1: Current status of SChPT application. See text for key words.

4. Summary and conclusion

In Table 1, we present the current status in the application of SChPT to various physics sub-
jects. Here, the v symbol represents that the mission is completed, and x represents that no work
has yet been done. The A symbol indicates that we are working on this subject now, and it will be
done in near future.
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