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1. Introduction

Chiral Perturbation Theory (ChPT) [1, 2] describes the low energy interactions of pions, which

are the pseudo-Goldstone bosons associated to the spontaneus chiral symmetry breaking of QCD,

and hence, the relevant degrees of freedom at low energies. ChPT is built as the most general low

energy expansion in terms of the pion momenta and mass that is compatible with the QCD symme-

tries. The details of the underlying dynamics at higher energies are encoded in a set of parameters,

known as low energy constants (LECs), that appear at the different orders in the expansion, and,

once renormalized, absorb the loop divergences present at that order. Since perturbative QCD can-

not be applied at very low energies, it is particularly difficult to obtain the values of these LECs

from first principles and, with few exceptions, the LECs have been determined best from the com-

parison with experiment [2, 3, 4, 5]. There are determinations of the LECs from lattice QCD (we

refer to [7] for a recent compilation), and it is also possible to obtain positivity constraints for the

LECs coming from axiomatic field theory [6].

In the ChPT ππ scattering amplitude only certain combiantions of the LECs appear to a given

order of the calculation. To leading order, O(p2), there are no LECs and only the pion mass decay

constant Mπ and fπ appear. To next to leading order (NLO), or O(p4), which corresponds to a one-

loop calculation, only four LECs, called l1, ..., l4 appear in the amplitude. At next to next to leading

order (NNLO), or O(p6), which corresponds to a two-loop calculation, only six independent terms

appear [8], multiplied the corresponding combination of LECs, denoted b̄i, i = 1...6.

Here we report our work [9] on the determination of the LECs that appear in the ππ scattering

amplitude. We obtain these LECs from fits to the coefficients of the momentum expansion of the

amplitude around threshold, known as threshold parameters, which can be calculated within ChPT

and expressed in terms of the LECs. The experimental value of the threshold parameters we use is

the one obtained from a dispersive data analysis in [10], which includes the very precise and reliable

results on Kl4 decays from the NA48/2 collaboration [12]. We also provide here the calculation of

the third order coefficients of the threshold expansion, which was not performed in [10].

2. Threshold parameters

The amplitude for ππ scattering is customarily decomposed in terms of partial waves tI
ℓ , of

definite isospin I and angular momentum ℓ: tI
ℓ(s) =

1
64π

∫ 1
−1 T I(s, t,u)Pℓ(cosθ)d(cosθ), θ being

the scattering angle, Pℓ the Legendre polynomials, s, t,u the usual Mandelstam variables and T the

amplitude. With this normalization, the threshold expansion can be written as:

1

Mπ
Re tI

ℓ(s) = p2ℓ
(

aℓI +bℓI p2 +
1

2
cℓI p4 + ...

)

, (2.1)

where the aℓI are usually called scattering lengths, the bℓI slope parameters, the cℓI shape parame-

ters, and all of them, generically, threshold parameters.

The use of sum rules to obtain the values of threshold parameters is a well established tech-

nique [5, 11] that we will also use here. Our experimental determination of the threshold parameters

is performed using the parametrizations of [10], which were obtained by highly constraining data

fits to satisfy three sets of dispersion relations within uncertainties. In [10], the values of the a

and b parameters up to F waves were provided. With the aim of minimizing the uncertainties, they

2



P
o
S
(
C
D
1
2
)
0
5
1

Determination of ChPT LECs from a precise description of ππ scattering threshold parameters
Guillermo Rios

were obtained from sum rules, with the only exception of the 5aS0 + 2aS2 combination, which is

orthogonal to the one appearing in the Olsson sum rule (note the spectroscopic notation, where the

ℓ= 0,1,2,3... are denoted S,P,D,F...).

Here, we also provide the calculation of the third order coefficients c of the threshold expan-

sion, which adds five more observables for the fit. For the c parameters with ℓ > 0, we use the

Froissart-Gribov sum rules:

cℓI =

√
π Γ(ℓ+1)

Mπ Γ(ℓ+3/2)

∫ ∞

4M2
π

ds

{

16ImF I ′′(s,4M2
π)

(s−4M2
π)

2sℓ+1
(2.2)

−8(ℓ+1)
ImF I ′(s,4M2

π)

(s−4M2
π)s

ℓ+2
+

ImF I(s,4M2
π)

sℓ+3

(ℓ+2)2(ℓ+1)

ℓ+3/2

}

,

where F I(s, t) = T I(s, t)/4π2 and the primes denote the derivative with respect to cosθ . This

formula allow us to calculate the c parameters for the P, D0, D2 and F waves. For the S waves we

provide two new sum rules, and also one for cP, in order to reduce its error:

cS2 = −6bP −10aD2 +
8

Mπ

∫ ∞

4M2
π

ds

{

ImF0+(s,0)

s3
(2.3)

+
1

(s−4M2
π)

5/2

[

ImF0+(s,0)
√

s−4M2
π

−
2Mπa2

S2

π
−

s−4M2
π

π

(

Mπ

2
(2aS2bS2 +a4

S2)−
a2

S2

4Mπ

)

]}

,

cS0 =−2cS2 −20aD2 −10aD0 +
12

Mπ

∫ ∞

4M2
π

ds

{

ImF00(s,0)

s3
+

1

(s−4M2
π)

5/2

[

ImF00(s,0)
√

s−4M2
π

(2.4)

−
4Mπ(2a2

S2 +a2
S0)

3π
−

s−4M2
π

3π

(

Mπ [2(2aS2bS2 +a4
S2)+2aS0bS0 +a4

S0]−
2a2

S2 +a2
S0

2Mπ

)]}

cP = −
14aF

3
+

16

3Mπ

∫ ∞

4M2
π

ds

{

ImF I=0(s,0)

3s4
−

ImF I=1(s,0)

2s4
(2.5)

−
5ImF I=2(s,0)

6s4
+

[

ImF I=1(s,0)

(s−4M2
π)

4
−

3a2
PMπ

4π(s−4M2
π)

3/2

]}

.

The derivation is similar to that of the sum rules for bP, bS0 and bS2 obtained in [13]. They corre-

spond to the threshold limit, taken from above, of the second derivative of a forward dispersion rela-

tion for the F I=1, F0+ and F00 amplitudes, respectively. Let us recall that F0+ = F I=2/2+F I=1/2

whereas F00 = 2F I=2/3+F I=0/3. For a list of the resulting values, we refer the reader to Table II

of our original work [9].

3. O(p4) fits

We start by fitting the O(p4) LECs by using the one-loop expression of the threshold parame-

ters, which will help us check the stability of the LECs values and the need for higher orders. We

actually fit the l̄i parameters, which are basically the lr
i (µ) at the µ = Mπ scale and normalized so

that they have values of order one [2]. Note, however, that l̄3 and l̄4 only appear through the quark
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Fit to l̄1 l̄2 l̄3 l̄4 χ2/d.o. f .

aS,bS,aP 1.1±1.0 5.1±0.7 −1±8 7.1±0.7 0.23

aD −1.75±0.22 5.91±0.10 — — 0

cS −2.4±0.9 4.8±0.4 — — 0

aS,bS,aP,aD,cS,bP −2.06±0.14 5.97±0.07 −5±8 7.1±0.6 7.9

aS,bS,aP,aD,cS,bP, using f0 −1.06±0.11 4.6±0.9 0±6 5.0±0.3 7.06

Estimate O(p4) −1.5±0.5 5.3±0.7 −3±7 6.0±1.2 —

Table 1: O(p4) fits to different sets of threshold parameters containing polynomial O(p4) contributions. We

observe that a precise description of the observables is not possible at one loop. Anyway, we provide an

estimate of how much one should enlarge the uncertainties of the LECs if, for simplicity, one still insists in

using the one-loop formalism.

mass dependence of Mπ and fπ , respectively, and therefore we cannot expect much sensitivity to

these two parameters from fits to the coefficients of the momentum expansion of amplitudes. In

addition, since the LECs only appear in the polynomial part of the partial waves, which at one loop

is of O(p4), only ten observables carry any dependence on the LECs: aS0), aS2), aP, bS0, bS2, bP,

cS0, cS2, aD0 and aD2. The rest of the coefficients multiply powers of the momentum higher than p4

and thus, do not receive a contribution from the O(p4) LECs.

In Table 1 we show the results of our fits. First, we have fitted only the observables whose

leading contribution is of O(p2), since these might be more stable under the higher order correc-

tions. The fit comes out with relatively low χ2/d.o. f .. Next we present two determinations of

l̄1 and l̄2, which can be fixed using only either aD0 and aD2, or cS0 and cS2. It is evident that the

resulting values from those fits are incompatible. The incompatibility is even worse when fitting

simultaneously the ten observables that depend on l̄i to O(p4), where we obtain a high χ2/d.o. f .

value. Finally, the effect of higher order corrections has been studied by fitting to the one-loop

amplitude but replacing fπ by f0 in the O(p4) terms, since the two expressions only differ in higher

order contributions. This we show in row 5 of Table 1. The χ2/d.o. f is somewhat lower, but the

values of the LECs come out rather different from the previous calculation.

These results imply that, to the present level of precision, the one-loop ChPT formalism is not

enough and calls for higher order corrections. If one still wants to use this simpler version instead

of the full two-loop amplitude one can include the effect of higher orders into a systematic uncer-

tainty of the LECs. We propose to take the weighted average of the two previous fits, including

a systematic uncertainty to cover the LECs values of both fits. In Table IV of the original refer-

ence [9], we compare the resulting threshold parameters obtained using this averaged set with the

experimental values. Thanks to the larger uncertainty, the threshold parameters obtained are com-

patible within errors with the experimental values, except for bS0 and bP, which differ by more than

three and two standard deviations respectively. It is worth noting also that the positivity constranits

obtained from firts principles [6] are perfectly satisfied by this set of LECs, even in the worst case

scenario.
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4. O(p6) fits

As commented in the introduction, the two-loop ππ scattering amplitude can be recast in terms

of six independent terms multiplied by their corresponding low energy constants b̄i. In turn, these b̄i

can be rewritten in terms of the four O(p4) LECs and six combinations ri of O(p6) LECs [14]. The

difference in the amplitude using one way or the other is O(p8). However, despite increasing the

number of parameters to ten, the O(p6) amplitude still provides just six independent structures. As

a consequence, the fits in terms of l̄i and ri are much more unstable, and can even lead to spurious

solutions. For this reason we focus on the fits in terms of b̄i, and refer to the appendix [9] for a

study of the l̄i, ri fits.

We first fit the ten threshold parameters used in the previous section because, having a non-zero

O(p4) polynomial contribution, we expect these to be more stable under higher order corrections.

In the first row of Table 2 we show the resulting b̄i, which describes fairly well the fitted observables

with a χ2/d.o. f . = 1.2. However, when fitting all 18 observables, we obtain somewhat different

LECs (see the second row of Table 2) and the χ2/d.o. f . comes out rather poor. We have noticed

that cP alone contributes almost to one third of the total χ2. This might indicate that cP receives

important higher order contributions that are not being taken into account in the O(p6) calculation.

Once again we obtain a crude estimate of the size of higher order ChPT corrections, by changing

fπ by f0 in the last term of the expansion. cP suffers indeed the largest change, by almost 80%.

Thus, we proceed to fit again all threshold parameters except cP. The result is shown in the

third row of Table 2. The fit quality improves sizably, but we still get a high χ2/d.o. f . = 2.9,

which indicates that the two-loop calculation may not be enough to describe even the remaining

threshold parameters with their current level of precision. Again, we see the effect of higher order

corrections by making a fit replacing fπ by f0 in the O(p6) terms. We show the results in the

fourth row of Table 2. Surprisingly, we now obtain a good χ2/d.o. f . = 1.0 and all LECs are less

than two standard deviations away from those obtained by fitting only the threshold parameters

with an O(p4) polynomial part. We conclude that, by excluding cP, the two-loop fit can give an

acceptable description of the rest of threshold parameters. For this reason, we have once more

made a weighted average of the two fits (the one using fπ and the one using f0) adding systematic

uncertainties to cover both sets. This we show in the fifth row of Table 2, where we can see that

they are also quite compatible with previous determinations in the literature [5]. Also, this LECs

satisfy again the axiomatic constraints [6].

5. Summary

We have reported a work [9] on the determination the low energy constants of SU(2) Chiral

Perturbation Theory (ChPT) at one and two loops by fitting to the threshold parameters obtained

from sum rules using a recent and precise dispersive analysis of data [10], together with six addi-

tional observables that we have studied here.

We have checked that the one-loop formalism is clearly insufficient to accommodate the

present level of precision. The χ2/d.o. f . improves remarkably when using the two-loop expan-

sion, although it is still not sufficient to get a good quality fit. This suggests that even higher order

ChPT contributions may still be required to describe all these observables simultaneously.

5



P
o
S
(
C
D
1
2
)
0
5
1

Determination of ChPT LECs from a precise description of ππ scattering threshold parameters
Guillermo Rios

Fit to b̄1 b̄2 b̄3 b̄4 b̄5 b̄6
χ2

d.o. f .

aS,bS,aP,aD,cS,bP -14±4 14.6±1.2 -0.29±0.05 0.76±0.02 0.1±1.1 2.2±0.2 1.2

All -2±3 14.2±1.0 -0.39±0.04 0.746±0.013 3.1±0.3 2.58±0.12 5.2

All but cP -6±3 15.9±1.0 -0.36±0.04 0.753±0.013 2.2±0.4 2.44±0.12 2.9

All but cP, using f0 -12±3 13.9±0.9 -0.30±0.04 0.726±0.013 1.0±0.3 1.93±0.08 1.04

Estimate O(p6) -10.5±5.1 14.5±1.8 -0.31±0.06 0.73±0.02 1.3±1.0 2.1±0.4 —

Ref. [5] -12.4±1.6 11.8±0.6 -0.33±0.07 0.74±0.01 3.6±0.4 2.35±0.02 —

Table 2: O(p6) fits. In the first row we only fit to observables containing polynomial O(p4) contributions.

Next we show the fit to all the threshold parameters obtained in this work. The quality is rather poor, but

most of the disagreement is caused by cP. When this observable is omitted, the resulting fits are much better,

specially when using f0 instead of fπ in the last term of the ChPT expansion. We provide an estimate of the

LECs uncertainties from the fits to all observables except cP, as a weighted average of the fits using f0 or fπ .

The resulting b̄i parameters are very consistent with previous determinations, listed in the last row.
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