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We present a dispersive analysis of the three-pion decays ofthe lightest isoscalar vector mesons.

The framework allows for a consistent implementation of final-state interactions among all three

pions, with the results being solely dependent on the pion-pion P-wave scattering phase shift.

We compare our results with the very precise KLOE measurement of φ → 3π . Theω/φ → 3π
partial-wave amplitude serves as input to a dispersive analysis of theω/φ → π0γ∗ transition

form factor. We compare to data forω → π0µ+µ− by the NA60 collaboration and motivate an

experimental measurement of the OZI forbiddenφ → π0ℓ+ℓ− decays in order to understand the

strong deviations in theω channel.
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1. Introduction

Due to its relative simplicity, the decays of the lightest isoscalar vector mesons into three pions
are an ideal testing ground for a dispersion-theoretical approach. Indeed, due to Bose symmetry
only odd partial waves can contribute to the decay, and neglecting the discontinuities of F- and
higher partial waves the system is completely determined bytheππ P-wave phase shift, which is
known very precisely [1, 2]. On the experimental side a largeexisting data base has already been
established forφ → 3π by the KLOE and CMD-2 collaborations [3, 4], while plans for Dalitz plot
analyses of theω → 3π channel at WASA and KLOE are well progressed. Moreover, theφ → 3π
decay allows us to study the effects of crossed-channel rescattering effects on resonances, namely
theρ , in the decay region.

The ω/φ → π0γ∗ transition form factors have garnered considerable attention recently due
to their possible impact on hadronic light-by-light scattering, which is believed to soon constitute
the dominant uncertainty in(g− 2)µ . They are expected to help constrain the pseudoscalar pole
terms, whose strength is determined by the doubly-virtual form factorFπ0γ∗γ∗(M

2
π0,q2

1,q
2
2), for fixed

isoscalar photon virtualities,q2
1 = M2

ω . We will use theω/φ → 3π partial-wave amplitude and the
precisely known pion vector form factor as input to our calculations. Data forω → π0ℓ+ℓ− has
been collected by several groups. We will concentrate on measurements presented in Refs. [5, 6, 7].

2. Dispersion relations for ω/φ → 3π

A dispersion theory approach to hadronic three-body decaysis not a new subject. In fact, it
has been used in the past to analyze theω → 3π decay [8]. We will resort to the method devised in
Ref. [9] for η → 3π. The integral equations derived for numerical calculations are based on fun-
damental physics principles: unitarity, analyticity and crossing symmetry. The only approximation
that enters our calculations is the assumption of elasticππ scattering and that discontinuities of F
waves are small enough to be neglected (this issue is more closely investigated in Ref. [10]). In
that approximation the scattering amplitude can be decomposed into functions of one variable with
only a right-hand cut,

F (s, t,u) = F (s)+F (t)+F (u) , (2.1)

wheres, t,u are the Mandelstam variables of the decay ands+ t + u = M2
ω/φ + 3M2

π = 3s0. The
functionsF (s) fulfill the unitarity relation

discF (s) = 2iθ(s−4M2
π){F (s)+ F̂ (s)}sinδ (s)e−iδ (s) , (2.2)

whereδ (s) is theππ P-wave phase shift and the inhomogeneityF̂ (s) is given as

F̂ (s) = 3〈(1−z2)F 〉(s) , 〈zn f 〉(s) = 1
2

∫ 1

−1
dzzn f

(1
2

(

3s0−s+zκ(s)
)

)

, (2.3)

with κ(s) = σπ(s)λ 1/2(M2
ω/φ ,M

2
π ,s), σπ(s) =

√

1−4M2
π/s, and the Källén functionλ (x,y,z) =

x2 + y2 + z2 − 2(xy+ xz+ yz). Some care has to be taken to perform the angular integrationto
respect the analytic structure of the decay, we point to Ref.[10] for further details. A solution to
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Figure 1: Dalitz plots forω → 3π (left panel) andφ → 3π (right panel), divided by the P-wave phase space
and normalized to one in the center.

Eq. (2.2) is given by an integral equation,

F (s) = Ω(s)

{

a+
s
π

∫ ∞

4M2
π

ds′

s′
sinδ (s′)F̂ (s′)
|Ω(s′)|(s′−s)

}

, (2.4)

wherea is the only subtraction constant of the system and

Ω(s) = exp

{

s
π

∫ ∞

4M2
π

ds′
δ (s′)

s′(s′−s)

}

(2.5)

is the Omnès function [11]. The integral equation (2.4) is solved together with Eq. (2.3) by an
iterative numerical procedure. In Fig. 1 we display the Dalitz plot, divided by phase space and
normalized to one in the center, in terms of the variables

x=

√
3(t −u)

2Mω/φ(Mω/φ −3Mπ)
, y=

3(s0−s)
2Mω/φ(Mω/φ −3Mπ)

. (2.6)

Performing a trivial redefinition, we can show thata serves as the overall normalization of the
decay amplitude [10], so that thenormalizedDalitz plot dependsonly on the input for theππ P-
wave phase shift, for which we use the results from Refs. [1, 2]. The ω → 3π Dalitz plot shows
a smooth distribution, which rises from the center to the outer borders. The available phase space
is obviously not sufficient to contain theρ resonance, nevertheless it fixes the sign of the leading
slope parameter of the Dalitz plot parameterization unambiguously. Theφ → 3π Dalitz plot shows
significantly more structure, since the physical region encompasses theρ resonance. From its
center, the Dalitz plot distribution rises towards these bands and then steeply falls off, showing
almost complete depletion towards the outer corners.

It remains to analyze the influence of crossed-channel rescattering. This is done in Fig. 2.
We devise two separate methods to fix the subtraction constant a. For the left-hand scale of either
diagrama is matched to the decay rate,Γω→3π = 7.56 MeV andΓφ→3π = 0.65 MeV respectively,
before the iteration. We observe that in that case the partial width of the final result is increased by
about 20% forω → 3π and decreased by the same amount forφ → 3π. For the right-hand scales
we matcha to the decay rate before and after the iteration and observe that a significant part of the
modifications is absorbed in an overall normalization. We also observe that theρ resonance bands
are left relatively unaffected.
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Figure 2: |Ffull |2/|FF̂=0|2 for ω → 3π (left panel) andφ → 3π (right panel), see text for details.

Comparing to the experimentalφ → 3π Dalitz plot, we fit the subtraction constant as an overall
normalization to the KLOE data shown in Fig. 3. Theχ2/ndof of the fit without rescattering ef-
fects,F̂ = 0, ranges between 1.71. . .2.06, while the uncertainty range stems from varying between
different phase shift parameterizations and uncertainties related to their high-energy behavior [10].
Rescattering effects improve theχ2/ndof to 1.17. . .1.50. While this points to an overall improve-
ment of the fit quality with rescattering effects, the goodness of the fit is still rather low due to the
high precision of the KLOE data.

We can oversubtract the dispersion integral in Eq. (2.4) at the expense of predictability and the
correct high-energy behavior of the amplitudeF (s). This leads to

F (s) = Ω(s)

{

a+bs+
s2

π

∫ ∞

4M2
π

ds′

s′2
sinδ (s′)F̂ (s′)
|Ω(s′)|(s′−s)

}

. (2.7)

If we then include the additional subtraction constantb in our fit, we find a perfect representation
of the data withχ2/ndof= 1.02. . .1.03. Note that this representation respects unitarity, analyticity
and crossing symmetry. It can be used as input for theω/φ → π0γ∗ partial-wave amplitude in an
analysis of theω/φ → π0γ∗ transition form factor. Further details on the above discussions may
be found in Ref. [10].

3. Dispersion relations for the ω/φ → π0γ∗ transition form factor

Assuming that theω/φ → π0γ∗ transition form factorfVπ0(s) (V = ω/φ ) is dominated byππ

Figure 3: Dalitz plot measured by the KLOE collaboration [3]. Shown isthe efficiency-corrected number
of counts in the respective bin, divided by phase-space and normalized to 1 in the Dalitz plot center.
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Terschlüsen et al.

f1(s) = aΩ(s)
full dispersive

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

10

100

√
s [GeV]

|F
φ
π
0
(s
)|2

VMD
f1(s) = aΩ(s)
once subtracted f1(s)

twice subtracted f1(s)

Figure 4: Left: numerical results forω → π0γ∗. We show pure VMD (dashed line), the results of a chiral La-
grangian treatment with explicit vector mesons [13] (yellow band), the dispersive solution forf1(s) = aΩ(s)
(blue band), and the full dispersive solution with one subtraction in theV → 3π partial-wave amplitude (red
band). Right: Numerical results forφ → π0γ∗. Again, we show pure VMD (dashed line), the dispersive
solution for f1(s) = aΩ(s) (blue band), and the full dispersive solution with one subtraction (red band) and
two subtractions (yellow band).

intermediate states1 one can derive the unitarity relation (see also [12])

discfVπ0(s) =
is

48π
σ3

π(s) f1(s)F
V∗
π (s) , (3.1)

where f1(s) = F (s) + F̂ (s) is the previously determinedV → 3π partial-wave amplitude and
FV

π (s) is the well-known pion vector form factor. This relation leads to a once-subtracted dispersion
relation

fVπ0(s) = fVπ0(0)+
s

96π2

∫ ∞

4M2
π

ds′
σ3

π(s
′) f1(s′)FV∗

π (s′)
s′−s

, (3.2)

where the subtraction constant is fixed by the real-photon partial width ΓV→π0γ . In principle the
asymptotic behavior of the partial-wave amplitude and the pion vector form factor even allows
for an unsubtracted dispersion relation, but the above is numerically much more stable. We have
calculatedΓV→π0γ by a sum rule forfVπ0(0) and find that it is saturated to about 90–95% by
two-pion intermediate states, thus justifying the approximation of neglecting inelastic intermediate
states.

In Fig. 4 we display the numerical results for the normalizedtransition form factorFVπ0(s) =
fVπ0(s)/ fVπ0(0). Although we significantly improve the vector-meson dominance (VMD) result,

1Due to the fact thatγ∗ is required to be an isovector photon, this is a good approximation.
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we cannot accommodate the steep rise in experimental data. In fits of the transition form factor this
structure is often represented by a pole term at around 600–700 MeV, the physical nature of which
is unknown. We also find that three-particle effects in the partial-wave amplitude do not perturb the
spectrum in a way which is observable at the current precision level of data. The only loose end at
this stage of the discussion is the fact that ourω → 3π partial-wave amplitude is not backed up by
experimental data.

This problem is remedied when considering theφ → π0γ∗ transition form factor. The twice-
subtracted partial-wave amplitude is an extremely preciserepresentation of data, and thus all input
in this channel is well constrained. Our numerical results again show enhancement over VMD,
while crossed-channel rescattering effects are not particularly strong. We note that the physical
region of the decay encompasses theρ resonance, but there is no indication for any particular
behavior of the transition form factor as suggested byω → π0µ+µ− data. Based on these observa-
tions we strongly suggest an experimental investigation ofφ → π0ℓ+ℓ−: it is reasonable to assume
that the steep rise at around 600–700 MeV also occurs in this channel, with the added advantage
that in this case it would be part of the observable region andmay thus significantly help to improve
our understanding of transition form factors.

A more detailed discussion of theV → π0γ∗ transition form factor is given in Ref. [14].
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