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K`4 decays are interesting for several reasons: They allow an accurate measurement of a combi-
nation of S-wave ππ scattering lengths, one form factor of the decay is connected to the chiral
anomaly and the decay is the best source for the determination of some low energy constants of
ChPT. We present a dispersive approach to K`4 decays, which takes rescattering effects fully into
account. Some fits to NA48/2 and E865 measurements and results of the matching to ChPT are
shown.

The 7th International Workshop on Chiral Dynamics
August 6 -10, 2012
Jefferson Lab, Newport News, Virginia, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:stoffer@itp.unibe.ch
mailto:gilberto@itp.unibe.ch
mailto:passemar@lanl.gov


P
o
S
(
C
D
1
2
)
0
5
8

A Dispersive Treatment of K`4 Decays Peter Stoffer

1. Motivation

K`4, the semileptonic decay of a kaon into two pions and a lepton-neutrino pair, plays a crucial
role in the context of low energy hadron physics, because it provides almost unique information
about some of the O(p4) low energy constants (LECs) of Chiral Perturbation Theory (ChPT), the
effective low energy theory of QCD. The physical region of K`4 starts already at the ππ threshold,
thus it happens at lower energies than e.g. elastic Kπ scattering, which would give access to the
same LECs. Since ChPT is an expansion in the masses and momenta, it is expected to converge
better at lower energies and to describe better K`4 than Kπ scattering.

Besides, as the hadronic final state contains two pions, K`4 is also one of the best sources of
information on the ππ scattering lengths a0

0 and a2
0 [1].

On the experimental side, we are confronted with impressive precision from high statistics
measurements. During the last decade, the process has been measured in the E865 experiment
at BNL [2] and in the NA48/2 experiment at CERN [1]. Recently, the NA48/2 collaboration has
published the results on the branching ratio and form factors of K`4, based on more than a million
events [3].

Here, we present preliminary results of a new dispersive treatment of K`4 decays. Dispersion
relations are an interesting tool to treat low energy hadronic processes. They are based on the very
general principles of analyticity and unitarity. In the present analysis, we do not solve the exact
dispersion relation for this process, but an approximate form, which follows if the contribution
of D- and higher waves to the discontinuities are neglected. This approximation is valid up to and
including O(p6) in the chiral counting. The effects due to ππ and Kπ rescattering in S- and P-wave
are however resummed to all orders. We expect this to capture the most important contributions
beyond O(p6). The dispersion relation is parametrised by five subtraction constants. As soon
as these constants have been fixed, the energy dependence is fully determined by the dispersion
relation.

2. Dispersion Relation for K`4 Decays

2.1 Matrix Element and Form Factors

We consider the charged decay mode of K`4:

K+(p)→ π
+(p1)π

−(p2)`
+(p`)ν`(pν), (2.1)

where ` ∈ {e,µ} is either an electron or a muon.
After integrating out the W boson, we end up with a Fermi type current-current interaction

and the matrix element splits up into a leptonic times a hadronic part. The leptonic matrix element
can be treated in a standard way. The hadronic matrix element exhibits the usual V −A structure of
weak interaction. Its Lorentz structure allows us to write the two contributions as〈

π
+(p1)π

−(p2)
∣∣Vµ(0)

∣∣K+(p)
〉
=− H

M3
K

εµνρσ LνPρQσ , (2.2)

〈
π
+(p1)π

−(p2)
∣∣Aµ(0)

∣∣K+(p)
〉
=−i

1
MK

(
PµF +QµG+LµR

)
. (2.3)
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In the electron mode (up to now the only one where experimental data is available), both S- and
P-wave of a specific linear combination of the form factors F and G are accessible:

F1(s, t,u) = XF(s, t,u)+(u− t)
PL
2X

G(s, t,u), (2.4)

where s, t and u are the usual Mandelstam variables, X = 1
2 λ 1/2(M2

K ,s,s`), PL = 1
2(M

2
K − s− s`)

and s` = (p`+ pν)
2. λ (a,b,c) = a2 +b2 + c2−2(ab+bc+ ca) is the Källén triangle function.

2.2 Decomposition of the Form Factor

The form factor F1 has the following analytic properties:

• There is a right-hand branch cut in the complex s-plane, starting at the ππ-threshold.

• Analogously, in the t- and u-channel, right-hand cuts start at the Kπ-threshold.

Due to crossing, the right-hand cuts in the t- and u-channel show up in the s-channel for negative
values of s. The situation is analogous for the other channels.

Based on fixed-t and fixed-u dispersion relations for the form factor, we can derive its decom-
position into functions of a single variable. Such a decomposition has first been worked out for the
ππ scattering amplitude [4] and later for Kπ scattering [5].

The basic idea is to define functions that only contain the right-hand cut of each partial wave
and to split up in this way all the discontinuities of the form factor. For instance, if we define the
s-channel partial wave expansion as

F1(s, t,u) = f0(s)+ f1(s)cosθπ + fl≥2(s, t,u), (2.5)

where θπ is the s-channel scattering angle, we define a function with only the right-hand cut of the
S-wave as follows:

M0(s) := P(s)+
s4

π

∫
Λ2

4M2
π

Im f0(s′)
(s′− s− iε)s′4

ds′, (2.6)

where P(s) is a subtraction polynomial. After defining similar functions that take care of the right-
hand cuts of f1 and the S- and P-waves in the crossed channels, all the discontinuities are divided
into functions of a single variable.

This procedure, also known as ‘reconstruction theorem’, neglects on the one hand the imagi-
nary parts of D- and higher waves, on the other hand the high energy tails of the dispersion integrals
from Λ2 to ∞. Both effects are of O(p8) in the chiral counting. In order to simplify substantially the
dispersion relation, we also neglect at the present preliminary stage the dependence on s`, which
is experimentally small. (In order to describe the dependence on s`, we will need to consider a
coupled system for the form factors F and G.)

Respecting isospin properties, we obtain the following decomposition of the form factor:

F1(s, t,u) = M0(s)+
2
3

N0(t)+
1
3

R0(t)+R0(u)+(u− t)M1(s)−
2
3

[
t(u− s)−∆Kπ∆`π

]
N1(t),

(2.7)

where ∆Kπ = M2
K−M2

π and ∆`π = s`−M2
π .
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2.3 Integral Equations

One should not try to solve directly the dispersion relation (2.6) since it may not uniquely
determine the solution of the problem [6]. Noting that each of the functions M0, . . . satisfies an
Omnès equation, we apply the solution to the inhomogeneous Omnès problem:

M0(s) = Ω
0
0(s)

{
P̃(s)+

s3

π

∫
Λ2

4M2
π

M̂0(s′)sinδ 0
0 (s
′)

|Ω0
0(s′)|(s′− s− iε)s′3

ds′
}
, (2.8)

with a new subtraction polynomial P̃(s) and the Omnès function

Ω
0
0(s) := exp

{
s
π

∫
∞

4M2
π

δ 0
0 (s
′)

s′(s′− s− iε)
ds′
}
. (2.9)

Similar relations hold for the other functions. Due to Watson’s final state theorem, we can identify
the phases δ I

l (l – angular momentum, I – isospin) below the inelastic thresholds with the phase
shifts of the elastic scattering. As an input to our equations, we therefore need the following phase
shifts:

• δ 0
0 , δ 1

1 : elastic ππ scattering [7]

• δ
1/2
0 , δ

1/2
1 , δ

3/2
0 : elastic Kπ scattering [8, 9]

The inhomogeneities in the Omnès problem are given by the differences of the functions
M0, . . . and the corresponding partial wave, e.g. M̂0(s) = f0(s)−M0(s). These ‘hat functions’
contain the left-hand cut of the partial wave and we compute them by projecting out the partial
wave of the decomposed form factor (2.7). E.g. M̂0(s) is then given as angular averages of N0, N1,
etc.

We can now solve the dispersion relation for the form factor. We have parametrised the prob-
lem by the constants appearing in the subtraction polynomials (in total, only five independent sub-
traction constants are needed due to an ambiguity in the decomposition) and we use the elastic
scattering phase shifts as inputs. The energy dependence is then fully determined by the dispersion
relation.

We face a set of coupled integral equations: The functions M0(s), M1(s), . . . are given as
dispersive integrals involving the hat functions M̂0(s), M̂1(s), . . ., whereas the hat functions are
themselves defined as angular integrals over M0(s), M1(s), etc. This system can be solved by
iteration. The problem is linear in the subtraction constants that have to be determined by a fit to
data.

3. Preliminary Results

3.1 Fit to Data

We perform a fit of the dispersion relation to both, the E865 [2] and NA48/2 data sets [3].
The S-wave dominantly determines the three subtraction constants in M0, the P-wave the two in
M1. Figure 1 shows the result of the combined fit for the two partial waves. The χ2/dof of this
fit is 1.73. This rather large value is a consequence of the small uncertainties in the S-wave of the
relative form factor in the NA48/2 data.
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Figure 1: Fit of the S- and P-wave to both E865 [2] and NA48/2 [3] data. The error bars indicate sepa-
rately the uncorrelated part of the uncertainties and the total errors (containing also the uncertainty from the
normalisation).

3.2 Matching to ChPT

After having fixed the subtraction constants by fitting the data, we can match our dispersive
representation to the ChPT result. In this matching procedure, we determine the LECs Lr

1, Lr
2 and

Lr
3.

The dispersion relation allows us to choose a convenient matching point that may lie outside
the physical region. We choose the point s = t− u = 0 below the threshold, where ChPT should
even converge better. In table 1, we show preliminary values of the low energy constants, resulting
from a matching to the O(p4) ChPT result. For comparison, we also quote the values of the global
fit by Bijnens and Jemos [10] that takes as input the K`4 data from NA48/2 [1].

Table 1: Preliminary results for the LECs (µ = 770 MeV).

103Lr
1 103Lr

2 103Lr
3

Dispersive treatment, fit to E865 [2] 0.42±0.41 0.41±0.34 −2.19±1.41
Dispersive treatment, fit to NA48/2 [3] 0.60±0.29 0.63±0.28 −3.16±1.19
Bijnens, Jemos, ‘fit All’ [10] 0.88±0.09 0.61±0.20 −3.04±0.43

We find that our fit to NA48/2 agrees with this global fit. A large part of our uncertainties
stems from the ππ scattering phase shifts and contains at present a conservative estimate of the
systematics.

Our preliminary values are subject to change as we are going to perform a matching to O(p6)

ChPT and include the neglected s` dependence as well as isospin breaking corrections [11].

3.3 Summary

We have presented a dispersive representation of K`4 decays that provides a model indepen-
dent parametrisation valid up to and including O(p6). It includes a full summation of final state
rescattering effects. It is parametrised by subtraction constants that we fix by fitting experimental
data. The matching to ChPT can be performed below the physical threshold, where ChPT should
converge better. Hence, we expect to find more reliable values for the LECs than with a pure ChPT
treatment.
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