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Both theoretical arguments and Monte Carlo observatiotiséte that the topological structure
of the QCD vacuum consists of a laminated array of extendsterent codimension-one mem-
branes of alternating sign. Lard®-arguments, supported by gauge/string holography, inglicat
that these membranes are domain walls which separate t@isfitex vacua” with values of the
topologicald parameter which differ by-27t. This exposes a close analogy with PID1) gauge
theory, wheref can be interpreted as electric polarization, and the domaiis are pointlike
charged patrticles. In 4D QCD, th# parameter represents background Ramond-Ramond flux,
which can be interpreted as a polarization of the charged bmemes in the vacuum. In this
framework, the chiral condensate is formed from the quarkasa modes on the membranes.
Massless Goldstone boson propagation takes place due tordircation between bulk oscilla-
tions of the polarization fiel@® and the surface currents represented by the Chern-Simfoma3-
on the brane surface. This coordination is enforced by thgaege invariance which imposes an
anomaly inflow constraint between bulk and surface currents
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1. Introduction

The role of gauge field topology in hadron phenomenology afgpmost directly in the reso-
lution of the “U(1) problem,” where topologically nontraligauge configurations give rise to the
axial anomaly and are responsible for giving a large madsadlavor singlet pseudoscalaf me-
son. But it is also likely that the topological structure b&tQCD vacuum plays a central role in
spontaneous chiral symmetry breaking and Goldstone baspagation. The idea that the forma-
tion of the chiral condensate in QCD is driven by topologittattuations of the gauge field has
been extensively explored. The most detailed theoretiodies of this issue have been carried out
in the context of the instanton liquid model [1, 2]. In thataed the localized 'tHooft zero modes
of the instantons mix and form a band of low-lying Dirac eigexes which are occupied by the
chiral condensate. However, it was pointed out long ago hyeWi3] that thel (1) problem did
not require instantons, but could be resolved in any modslititorporated nonzero topological
susceptibility in the pure glue theory. Not only are insteast an unnecessary restriction on the
form of topological fluctuations, but the behavior of themass (as a function dfl;) predicted
by the instanton model conflicts with chiral phenomenologyhe largeN. limit. The largeN;
arguments also lead to a qualitatively different picturehef QCD vacuum, consisting of discrete
guasivacua separated by extended 2+1 dimensional topalagembranes (domain walls) rather
than a gas or liquid of localized instantons. The fact thatim@nes fitting this description have
been observed in Monte Carlo studies of pure @u¢3) gauge theory [4, 5] lends strong support
to the largeN. view of the QCD vacuum.

The connection between topological charge fluctuationsta@dormation of the chiral con-
densate is undoubtedly more general than the instantoidl liqadel. In the instanton picture, the
'tHooft zero modes are localized lumps of left and right ahahargeg(1+ y5)q, around instantons
and antiinstantons, respectively. But we expect that gemasitive or negative fluctuations of
topological charge will produce low lying left- and rightdthded Dirac states attached to the fluc-
tuations, providing the eigenmodes required to form a cosale. The membranes that appear in
QCD Monte Carlo configurations are dipole layers of topatagjicharge, with positive and negative
charge sheets on opposite sides of the membrane. This catioguof topological charge around
the brane gives rise to left- and right-handed quark sunfacdes on opposite sides of the brane.
In a vacuum with a finite density of branes, these quark senfacdes form the chiral condensate.
Moreover, the extended, coherent structure of the topoddgharge sheets allows for delocalized
(i.e. propagating) quark surface modes. These delocatimmtes provide a natural mechanism for
Goldstone boson propagation.

2. Topological membranes in gauge theory

Itis instructive to first consider the role of gauge topolagy domain walls in a 2-dimensional
theory with aU (1) gauge invariance, specifically ti@PN—! sigma model. This model exhibits
many of the same topological properties as QCD. From lakfloate Carlo studies[6, 7, 8] it has
been shown that, while the vacuum®©P* andCP? is dominated by small localized instantons,
for N > 3 the topological fluctuations are predominantly in the fafextended codimension-one
membranes, quite analogous to those seen i84[8) gauge theory.
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The membranes that appear in large-N QCD [3] are domain wdillsh separate discrete,
guasi-stable vacua having topologigaparameters which differ by-27m. We can introduce such
a membrane by including in the path integral a space-depeisdieerm wheref is a step function
on the membrane surface.

Lo — Lo+ / 68(x)Q(x)dPx 2.1)

with 8(x) = 6y on one side of the brane and 0 on the other side. For both 2Dtbiébyies and
4D Yang-Mills, the topological charge densi)(x) can be written as the divergence of a Chern-
Simons currentQ(x) 0 dHK,,. Thus, with an integration by parts, the action of the braukices

to an integral of the Chern-SimoiB — 1) form over the surface of the membrane. In the 2D U(1)
example, the CS current is just the dual of the gauge potefyia- £,,A". In this case, the action
of the membrane is just the ordinary Wilson line integral,

6

So in the 2D U(1) theory, the topological membrane can bepnééed as the world line of a
point charge. This incorporates Coleman’s original intetgition of thed parameter in the massive
Schwinger model (QED?2) as a background electric field. Inspaee dimension, a charged particle
plays the role of a domain wall separating vacua which diffgrone unit of electric flux. For
2D U (1) theories, the analog of the discrete vacua in |&g€CD are “flux vacua” with a given
number of units of background electric flux. TH@rr quantization of the step il across a domain
wall is simply Gauss’s law combined with the quantizatiorelgctric charge.

For 4-dimensional QCD, the action of a brane is given by thélst bag” integral of the
Chern-Simons tensor over the 3-dimensional world voluntebrane [9],

6
Fyare = o0 / KL dx,, A dxy A dxy 2.3)
whereKj is the Chern-Simons 3-form,
2 _ apy
Ky = €uapyTr (AO’ﬁBAV—I— §A“ABAV> = €10pyK3 (2.4)

Just as the Wilson line represents a charged point par{lg) represents an membrane-like ex-
citation of the CS tensor which depends only on the gauge ¢@idponents within the 3D world
volume of the brane. Like the Wilson line, the CS action (2s3)ot locally gauge invariant, and
the action integrated over a closed surface is only invarrasd 2T under a topologically nontrivial
gauge transformation on the brane surface. IAM), A, = d,w, and the mod & ambiguity of
the action corresponds to the winding number of the gaugssgfaaround the loop. Similarly, in
4D Yang-Mills, the gauge variation of the CS 3-foifg is the exterior derivative of a WZW-like
2-form K5 on a fixed-time 2-dimensional brane surface,

OKy = €uvapd“K3P . (2.5)

This 2-formKj; is the 4D Yang-Mills analog of the gauge phasalong the Wilson line in (2.2).
It plays the role of a Hamiltonian describing the time-degem 2-dimensional brane surface. The
WZW 2-form K» is a functional of both the Yang-Mills field and the gauge sfanmationg = €%



Goldstone boson propagation H. B. Thacker

used to defin®Ks. As discussed in [10], small nontopological gauge vanmetion the brane
surface are related by anomaly inflow to transverse fluctoatof the membrane surface. This
defines an interplay between bulk space-time fluctuatioiseobrane surfaces and the fluctuation
of surface color currents on the brane. This connection ngraketo the dynamics of Goldstone
boson propagation.

In the CPN—1 sigma model, th&J (1) gauge potentiah, is an auxiliary field with no kinetic
term at tree level. Its EOM sets it equal to iél) currentj,. In the largeN approximation, an
Fﬁv term is generated in the action by one-loop vacuum polaoizaiAs a bulk field, the value of
8(x) in the 2-dimensionaCPN~! model can thus be interpreted as the local electric polivizaf
charged pairs in the vacuum. As in a dielectric medium, thallelectric charge density is given by
the spatial variation of the polarization, while a timeyag polarization produces a polarization
current:

010 = jo, 0o =—]1 (2.6)

In a 2D U(1) theory in which electric charge is carried by aenakntary fermion field (QED2),
ju = PyuY. Soin this case, the polarization fiex) is just the usual bosonization of the current
in 2D,

0u0 =¢uviy (2.7)

For a step functiorf(x) at a domain wall, this specifies that the discontinuitydas associated
with an edge current along the domain boundary. Noting tmataixial-vector current is just the
dual of the vector current,

ju=¢uwis (2.8)

we see that the polarization fiefl{x) is a chiral Goldstone field,
o = jt (2.9)

This relation between domain walls and tb€1) Goldstone field generalizes to the case
of QCD in 4 dimensions. While in the 2-dimensional U(1) theéris a polarization field de-
scribing charged particle pairs, in 4-dimensional Q@€[Describes the polarization of membrane-
antimembrane pairs. From both theoretical arguments [dd]Monte Carlo observations [12, 5]
we expect the local structure of the QCD vacuum to look lik¢aaliyonic crystal,” a laminated
array of alternating—sign membranes which are locally fhat jparallel over distances small com-
pared to the confinement scale. (The confinement scale isvdatal by the distance over which
the orientation of the branes decorrelates.) Just asielgaiarization in theCPN—1 vacuum arises
from the presence of polarizable charged particle painsijaily topological susceptibility in QCD
arises from the presence of polarizable membranes in theuwacln addition to providing finite
Xt and resolving thé&J (1) problem, this condensate of membranes points to a fundamnemier-
standing of Goldstone boson propagation. In a theory withroassless quark flavor, a rotation of
6 is equivalent to & (1) chiral rotation. This identifies the brane polarizationdi@lx) as the chi-
ral field associated with thg’ meson. In the larghl. limit of QCD, then’ becomes an approximate
Goldstone boson, with a mass of ord¢iN}. So in this limit we expect thg’ to propagate via the
same quark eigenmodes that allow propagation of massless.pAs | discuss in the next Section,
the propagation of Goldstone bosons in the QCD vacuum isuit reflsan interplay between the
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transverse motion of the branes, described by the bulkipatan field9(x), and the surface color
currents associated with the Chern-Simons action on theebrahis interplay is best understood
in terms of the descent equations of Yang-Mills theory [1Bjck define the interrelationship be-
tween gauge variations and exterior derivatives of opesatescended from the topological charge
Q(x) O Tr[FF]. The key physical idea here is that of “anomaly inflow” [14hieh relates bulk
and boundary currents at a membrane surface.

3. Goldstone boson propagation and anomaly inflow

The “secret long-range order” in QCD, first pointed out by ¢hexr [9], is seen from the
observation that nonzero topological susceptibiléguires the existence of a massless pole in the
Chern-Simons currrent correlator,

/ d*xEH (K, (XK, (0)) 0<° ?é‘zc;; X+ ... (3.1)
where the other terms are ones that vanish when dottedgfithr 9. For Ny < 1 QCD has a
finite mass gap, so the pole in (3.1) must not appear in anyigadysmplitude. There is a plausible
escape, sinc&, itself is not a gauge invariant operator. On the other hane, résidue of the
pole in (3.1) is the gauge invariant physical quanjity so the massless pole cannot be simply
gauge transformed away. To see how this problem resolves, iilsis again instructive to look
at a 2D U(1) example, namely QED2 [15]. In the Lorentz gaugentdation of this model, the
pole in the CS correlator (3.1) is cancelled (screened) ysighl amplitudes by a massless ghost
pole which represents a quark-antiquark Goldstone mode QBED2 cancellation between the
Goldstone pole and the gauge pole in the CS correlator (8flEcts the separation of the gauge
invariant axial vector currenf into a quark-antiquark Goldstone boson tej§n= 9,6 which is
exactly conserved and a Chern-Simons term which accountsga@anomaly,

JE =0+ +KH (3.2)

This same separation occurs in QCD, with the Chern-Simonerugiven by (2.4). The massless
poles coupling to the two operators on the right cancel irrimatements of the gauge invariant
current. At the surface of a CS brane, the requirement tlatigiint-hand side of (3.2) is gauge
invariant may be viewed as a bulk-boundary or anomaly inflomstraint relating the gauge vari-
ation of the polarization fiel@ across the brane to that of the CS current on the brane suitface
specifies tha®(x) must transform nontrivially under color gauge transforiora

5(0"6) = —3Ky = £,,ap0"KSP (3.3)

In practical calculations, this pole cancellation is retéelcin the cancellation between the quark-
antiquark (valence) and gluonic (hairpin) diagrams in thgsicaln’ correlator, These diagrams
separately have massless poles in the chiral limit, anddhesadlation of their long-range compo-
nents is a well-known and striking numerical phenomenorhélattice QCD calculation of the
flavor singlet pseudoscalar correlator. We can now intredu® massless quark flavors and con-
struct the nonsinglet pion correlator, obtained by simp§carding the hairpingg annihilation)
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diagram. This shows that a true Goldstone pion is a propagatlarization wave. The cancella-
tion of massless poles in thg correlator identifies the nonsinglet axial current on trenlersurface
with the Chern-Simons current. Note that, even in the atlesefqq annihilation, the nonsinglet
axial current consists of both bulk and boundary terms. @liield is discontinuous at the brane
surface, whether or nafg annihilation is allowed.) The gauge invariance or anomiaflpw con-
straint (3.3) at the brane surfaces enforces the overadlezwation of bulk + boundary currents and
hence the masslessness of nonsinglet Goldstone bosorgptimpa
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