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We present a coupled system of integral equations for theππ → N̄N and K̄K → N̄N S-waves

derived from Roy–Steiner equations for pion–nucleon scattering. We discuss the solution of the

corresponding two-channel Muskhelishvili–Omnès problemand apply the results to a dispersive

analysis of the scalar form factor of the nucleon fully including K̄K intermediate states. In par-

ticular, we determine the corrections∆σ and∆D, which are needed for the extraction of the pion–

nucleonσ term fromπN scattering, and show that the difference∆D −∆σ = (−1.8±0.2)MeV

is insensitive to the inputπN parameters.
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1. Introduction

The pion–nucleonσ term σπN measures the contribution of the light quarks to the nucleon
massm, and is directly related to the form factor of the scalar current

σ(t) =
1

2m
〈N(p′)|m̂(ūu+ d̄d)|N(p)〉, t = (p′− p)2, m̂=

mu+md

2
, (1.1)

at vanishing momentum transferσ(0) = σπN. The standard procedure for its extraction from pion–
nucleon (πN) scattering relies on the low-energy theorem [1, 2]

F2
π D̄+

(

s= m2, t = 2M2
π
)

= σ
(

2M2
π
)

+∆R, (1.2)

which relates the Born-term-subtracted isoscalarπN scattering amplitude at the Cheng–Dashen
point D̄+(s= m2, t = 2M2

π) to the scalar form factor evaluated at 2M2
π . The remainder∆R is free

of chiral logarithms at full one-loop order in chiral perturbation theory (ChPT) [3, 4], and has been
estimated as [3]

|∆R|. 2MeV. (1.3)

Rewriting (1.2) in terms of

∆D = F2
π

{

D̄+
(

s= m2, t = 2M2
π
)

−d+
00−2M2

πd+
01

}

, ∆σ = σ
(

2M2
π
)

−σπN, (1.4)

the extraction of theσ term reduces to the determination of the subthreshold parametersd+
00 and

d+
01 as well as the combination∆D −∆σ −∆R. The first two corrections can be calculated using a

dispersive approach [5]

∆D −∆σ = (−3.3±0.2)MeV, (1.5)

where the error only covers the uncertainties in theππ phase shifts available at that time. Here, we
update the determination of∆D and∆σ using modernππ phases, fully includingK̄K intermediate
states, and carefully studying the dependence of the results onπN subthreshold parameters as well
as theπN coupling constant.

2. Scalar pion and kaon form factors

We first consider the case of the scalar pion and kaon form factors FS
π (t) andFS

K (t), which
serve both to illustrate the method and as input for the scalar form factor of the nucleon. Unitarity
in theππ/K̄K system intertwines both form factors according to [6]

ImFS(t) =
(

T(t)
)∗Σ(t)FS(t), FS(t) =

(

FS
π (t)

2√
3
FS

K(t)

)

, (2.1)

with the phase-space factor

Σ(t) = diag
(

σ π
t θ
(

t − tπ
)

,σK
t θ
(

t − tK
)

)

, σ i
t =

√

1− ti
t
, ti = 4M2

i i ∈ {π,K}, (2.2)
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Figure 1: Modulus and phase of the scalar pion form factor. The solid, dashed, and dot-dashed lines refer to
FS

K (0) = M2
π/2, 0.4M2

π , and 0.6M2
π . The phase ofFS

π (t) is compared toδ 0
0 , as indicated by the dotted line.

and theT-matrix

T(t) =







η0
0(t)e

2iδ0
0 (t)−1

2iσπ
t

|g(t)|eiψ0
0 (t)

|g(t)|eiψ0
0 (t)

η0
0(t)e

2i(ψ0
0 (t)−δ0

0 (t))−1
2iσK

t






, (2.3)

expressed in terms of theππ andππ → K̄K phase shiftsδ 0
0 andψ0

0 as well as the inelasticity pa-

rameterη0
0 =

√

1−4σ π
t σK

t |g(t)|2θ
(

t − tπ
)

. The two-channel Muskhelishvili–Omnès (MO) prob-
lem [7, 8] defined by the unitarity relation (2.1) permits twolinearly independent solutionsΩ1,
Ω2 [7], which may be combined in the Omnès matrixΩ(t). In general, there is no analytical
solution forΩ(t), we follow here the discretization method of [9] for its numerical calculation.

Since the form factors are devoid of a left-hand cut, they arerelated directly to the solutions of
the MO problem with coefficients determined byFS

π (0) andFS
K(0) [6]. Using ChPT atO(p4) and

the low-energy constants from [10] we find

FS
π (0) = (0.984±0.006)M2

π , FS
K(0) = (0.4. . .0.6)M2

π , (2.4)

which, together withδ 0
0 andη0

0 from an extended Roy-equation analysis ofππ scattering [11],ψ0
0

from partial-wave analyses [12], and|g(t)| from a Roy–Steiner (RS) analysis ofπK scattering [13],
yield the results forFS

π (t) depicted in Fig. 1. The strong dependence ofFS
π (t) neartK on FS

K (0) at-
tests to the inherent two-channel nature of the problem and implies that an effective single-channel
description in terms of the phase ofFS

π (t) only works for sufficiently largeFS
K(0).

3. From Roy–Steiner equations to the scalar form factor

Unitarity couples theππ → N̄N andK̄K → N̄N S-wavesf 0
+(t) andh0

+(t) analogously to (2.1)

Im f (t) =
(

T(t)
)∗Σ(t) f (t), f (t) =

(

f 0
+(t)

2√
3
h0
+(t)

)

, (3.1)

but due to the presence of the left-hand cut the solution of the corresponding MO problem involves
inhomogeneous contributions, which may be derived from RS equations, cf. [13 – 15]. Generically,

3
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Figure 2: Results for the real and imaginary part off 0
+(t). The solid, dashed, and dot-dashed lines refer to

the input RS1, RS2, and RS3 as described in the main text. The black crosses indicate the results of [17].

the integral equation takes the form

f (t) = ∆(t)+ (a+bt)(t −4m2)+
t2(t −4m2)

π

∞
∫

tπ

dt ′
Im f (t ′)

t ′2(t ′−4m2)(t ′− t)
, (3.2)

where∆(t) includes Born terms,s-channel integrals, and highert-channel partial waves, whilea
andb subsume subthreshold parameters that emerge as subtraction constants. The main difficulty
in the evaluation of the formal solution

f (t) = ∆(t)+ (t −4m2)Ω(t)(1− t Ω̇(0))a+ t(t −4m2)Ω(t)b (3.3)

− t2(t −4m2)

π
Ω(t)

tm
∫

tπ

dt ′
ImΩ−1(t ′)∆(t ′)

t ′2(t ′−4m2)(t ′− t)
+

t2(t −4m2)

π
Ω(t)

∞
∫

tm

dt ′
Ω−1(t ′)Im f (t ′)

t ′2(t ′−4m2)(t ′− t)
,

concerns the construction of the Omnès matrix for a finite matching pointtm [14].
In the numerical analysis we put Imf (t) = 0 abovetm, which we choose astm = 4m2 (thus

exploiting a kinematical zero off (t)), take theπN and KN s-channel partial waves from [16],
and use the KH80πN coupling constant and subthreshold parameters as reference point [17].
In order to assess the uncertainties for higher energies we consider the following variants of the
input: first, we keep the phase shiftsδ 0

0 andψ0
0 constant above

√
t0 = 1.3GeV (“RS1”), where 4π

intermediate states become important and thus the two-channel approximation will break down,
and second, guide both phase shifts smoothly to their asymptotic value of 2π as for the meson
form factors (“RS2”). Finally, we amend RS1 in such a way that∆2(t), the KN component of
the inhomogeneity, is put to zero in order to assess the uncertainty in theKN input (“RS3”). The
corresponding results forf 0

+(t) depicted in Fig. 2 show that the largest uncertainty is induced by
the high-energy phase shifts.

4. Results

The scalar form factor of the nucleon fulfills the unitarity relation

Imσ(t) =
2

4m2− t

{

3
4

σ π
t

(

FS
π (t)

)∗
f 0
+(t)θ

(

t − tπ
)

+σK
t

(

FS
K(t)

)∗
h0
+(t)θ

(

t − tK
)

}

, (4.1)

4



P
o
S
(
C
D
1
2
)
0
6
9

Improved dispersive analysis of the scalar form factor of the nucleon Martin Hoferichter

Figure 3: σπN and∆σ as a function of the integral cutoffΛ.

so that, based on the results of the previous sections, the un- and once-subtracted dispersion rela-
tions

σ(t) =
1
π

∞
∫

tπ

dt ′
Imσ(t ′)

t ′− t
= σπN +

t
π

∞
∫

tπ

dt ′
Imσ(t ′)
t ′(t ′− t)

(4.2)

evaluated att = 0 andt = 2M2
π in principle determineσπN and∆σ provided the two-channel ap-

proximation for the spectral function is sufficiently accurate in the energy range dominating the
dispersive integral. Fig. 3 shows that, while the dispersion relation converges too slowly for the
σ term itself, the result for∆σ becomes stable forΛ & 1GeV. Adding the uncertainties from the
spectral function and the variation of the integral cutoff betweenΛ = 1.3GeV andΛ = 2m, we find

∆σ = (13.9±0.3)MeV

+Z1

(

g2

4π
−14.28

)

+Z2

(

d+
00Mπ +1.46

)

+Z3

(

d+
01M3

π −1.14
)

+Z4

(

b+00M3
π +3.54

)

,

Z1 = 0.36MeV, Z2 = 0.57MeV, Z3 = 12.0MeV, Z4 =−0.81MeV, (4.3)

where we have made the dependence on theπN parameters explicit (note that more modern deter-
minations point to lower values of theπN coupling constant aroundg2/4π ∼ 13.7 [18 – 20]).

Similarly, the correction∆D follows from thet-channel expansion

D̄+(s= m2, t) = d+
00+d+

01t −16t2

∞
∫

tπ

dt ′
Im f 0

+(t
′)

t ′2(t ′−4m2)(t ′− t)
+
{

J ≥ 2
}

+
{

s-channel integrals
}

(4.4)
evaluated att = 2M2

π , which gives

∆D = (12.1±0.3)MeV

+ Z̃1

(

g2

4π
−14.28

)

+ Z̃2

(

d+
00Mπ +1.46

)

+ Z̃3

(

d+
01M3

π −1.14
)

+ Z̃4

(

b+00M3
π +3.54

)

,

Z̃1 = 0.42MeV, Z̃2 = 0.67MeV, Z̃3 = 12.0MeV, Z̃4 =−0.77MeV. (4.5)
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Comparison with (4.3) shows that the dependence on theπN parameters cancels nearly completely
in the difference

∆D −∆σ = (−1.8±0.2)MeV. (4.6)

This cancellation can be explained by the observation that the spectral function in both dispersion
relations involvesf 0

+ in a very similar manner, so that both integrals are equally affected by the
dependence on theπN parameters inherited fromf 0

+. In the same way, part of the uncertainties
discussed in Sect. 3 drop out, so that the final error estimatefor ∆D −∆σ even decreases compared
to the uncertainty in both corrections individually.
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