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The nucleon and its negative-parity excited states in vacuum are examined in a maximum entropy

method (MEM) analysis of QCD sum rules. The MEM method does not restrict the spectral

function to the usual “pole + continuum"-form, which can be useful when applied to analyses

at finite temperature or density. We derive the parity projected nucleon QCD sum rules in the

vacuum including all known first orderαs corrections to the Wilson coefficients of the operator

product expansion (OPE). Since some of these corrections are large, we suppress them by using

a phase-rotated Gaussian kernel. Additionally, this phase rotation strongly suppresses the con-

tinuum contribution and improves the convergence of the OPE. The resulting sum rule has the

interesting feature that it is dominated by the term of the chiral condensate of dimension 3. Ana-

lyzing this sum rule by the maximum entropy method, we are able to extract information of both

the positive and negative parity states.
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1. Introduction

The QCD sum rule method is a powerful tool for studying hadron properties directly from
QCD [1]. In this method, the correlation function of an interpolating field operator, which can be
calculated in the deep Euclidean region by the operator product expansion (OPE), is related to the
hadronic spectral function in the physical region by a dispersion relation. The non-perturbative
contributions in the correlation function are expressed by vacuum condensates such as the chi-
ral condensate⟨qq⟩. When evaluating the correlation function quantitatively, one should take the
uncertainties of the values of the vacuum condensates into account and carefully check the conver-
gences of the OPE andαs corrections. As for the nucleon QCD sum rules considered so far, it is
known that theαs corrections and the uncertainties of the value of the four quark condensates⟨qq⟩2

are large.
In the traditional QCD sum rule analysis, it is necessary to assume some specific functional

form for the spectral function such as the “pole + continuum"-ansatz, where the pole corresponds to
the lowest lying hadronic state and the continuum stands for contributions of other states. Although
it is not completely obvious that the actual form of spectral function is accurately described by the
“pole + continuum"-ansatz, the properties of many hadrons have been successfully investigated
by this method. On the other hand, our approach with the help of the maximum entropy method
(MEM) is able to extract the spectral functions without assuming any specific form [2, 3, 4, 5]. We
have applied this new analysis method of QCD sum rules to the nucleon and its negative parity
excited state [6] and will review our results in these proceedings.

2. Nucleon QCD sum rules

In the QCD sum rules of the nucleon channel, one usually studies the properties of the time
ordered correlation function:

Π(q) = i
∫

d4xeiqx⟨0|T[η(x)η(0)]|0⟩ ≡ q/Π1(q
2)+Π2(q

2)

= −
∫ ∞

0

[
ρ+(m)

q/+m
q2−m2+ iε

+ρ−(m)
q/−m

q2−m2+ iε

]
dm. (2.1)

Here,η is a nucleon interpolating field andρ+(−)(m) denotes the spectral function which contains
contributions of only positive (negative) parity states coupling toη . Note that the nucleon interpo-
lating field couples to both positive and negative parity states [7]. Therefore, when only the sum
rule constructed from eitherΠ1(q2) or Π2(q2) is used, the contributions of positive and negative
parity cannot be separated. The contributions of these states can potentially disturb the analysis
and especially lower the reliability of the extraction of the negative parity states.

To overcome this problem, we use the old-fashioned correlation function in the rest frame [8]:

Πold(q0) = i
∫

d4xeiqxθ(x0)⟨0|T[η(x)η(0)]|0⟩
∣∣∣⃗
q=0

≡ γ0Πold
1 (q0)+Πold

2 (q0), (2.2)

where the essential difference to Eq.(2.1) is the insertion of the Heaviside step-functionθ(x0) be-
fore carrying out the Fourier transform. This correlator contains contributions only from states

2



P
o
S
(
C
D
1
2
)
0
7
9

MEM Analysis of the QCD Sum Rule and its Application to nucleon spectrum Keisuke Ohtani

which propagate forward in time. Using the Heaviside step-function and parity projection opera-
torsP± ≡ 1

2(γ0±1), one can construct a correlator that contains contributions of only positive or
negative parity states, as

1
2

Tr
[
P±Πold(q0)

]
= Πold

1 (q0)±Πold
2 (q0)≡ Π±(q0)

= −
∫ ∞

0
ρ±(m)

1
q0−m+ iε

dm. (2.3)

Making use of the property that the old-fashioned correlator is analytic in the upper half of the
complexq0 plane, we get the parity projected sum rule:∫ ∞

−∞
dq0

1
π

Im
[
Π ±

OPE(q0)
]
W(q0) =

∫ ∞

0
dq0ρ±

Phys.(q0)W(q0). (2.4)

Here,Π ±
OPE(q0) is calculated by the OPE in the deep Euclidean region,ρ±

Phys.(q0) stands for the
physical spectral function of positive and negative parity andW(q0) is an arbitrary function which
is analytic in the upper half of the imaginary plane and real on the real axis.

To construct the final sum rule, we have to the specify the kernelW(q0). One usually use Borel

kernelW(q0) = exp(− q2
0

M2 ) or Gaussian kernelW(q0) =
1√
4πτ exp(− (q2

0−s)2

4τ ), which correspond to
the Borel and Gaussian sum rules, respectively. However, in these sum rules, theαs corrections
for the perturbative and four quark condensate terms and the contributions of the continuum are
large, which lower the reliability of the analyses [9]. Following the method proposed by Ioffe
and Zyablyuk [10], who have constructed a new class of sum rules by using the phase rotated
complex variableq2eiθ instead of the realq2, we could improve this situation. One advantage of
this approach lies in the possibility of suppressing certain terms of the OPE by choosing some
specific value ofθ . To apply this idea to the parity projected sum rules, we use the phase-rotated
kernel:

W(q0,s,τ ,θ)dq0 =
1√
4πτ

Re

[
q0e−iθ exp

(
−
(q2

0e−2iθ −s)2

4τ

)
e−iθ dq0

]
. (2.5)

We can then obtain the specific form ofGold ±
OPE (s,τ,θ) which is defined as the left hand side of

Eq.(2.4) [6]:

Gold ±
OPE (s,τ ,θ) =

(
C0+C0αs(θ)

)
cos5θ +C4⟨

αs

π
G2⟩cosθ +

(
C6+C6αs

)
⟨qq⟩2cosθ + · · ·

±
[
(C3+

αs

π
C3αs)⟨qq⟩cos2θ +C5⟨qgσ ·Gq⟩+ · · ·

]
, (2.6)

whereC0, C0α(θ), C3,C3αs, C4, C5, C6 andC6α are numerical coefficients. Using the phase rotation,
the ratios ofαs corrections to leading terms at dimension 0 (C0αs

C0
) is reduced from 90 % to 5

% at θ = 0.108π (αs = 0.5), which shows that the convergence of the perturbative expansion is
significantly improved.

The perturbative, chiral condensate, four quark condensate terms andG±(s,τ,θ) atθ = 0 and
θ = 0.108π are given in Fig.1. For both value ofθ , the contribution of dimension 6 is small since
we use aq0-odd kernel, which eliminates the leading order contribution of this term. Therefore
the uncertainty of the four quark condensate does not much affect the results of this sum rule. For
θ = 0, the dimension 0 and 3 terms are dominant, which means that not only low lying nucleon
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Figure 1: (a) Gold ±
OPE (s,τ,θ), dimension 0 (perturbative), dimension 3 (chiral condensate) and dimension 6

(four quark condensate) terms atτ = 0.5[GeV4] andθ = 0. The thick lines denoteGold ±
OPE (s,τ,θ) and the

thin lines are the dimension 0, 3 and 6 terms. (b) Same as for (a), but forθ = 0.108π.

states but also the continuum largely contributes toG±(s,τ ,θ). This situation makes it difficult to
extract information on nucleonic properties. On the other hand, from Fig.1 (b) it can be seen that
in the phase rotated sum rule the chiral condensate term clearly gives the dominant contribution to
the OPE. Therefore, unlike the sum rule atθ = 0, the disturbance due to the contribution of the
continuum is considerably reduced. We also find that the difference of the OPE data between the
positive parity and negative parity states is caused by the chiral condensate in Fig.1.

3. Maximum entropy method

In this section, we briefly introduce the maximum entropy method (MEM) and explain how
this approach applies to the analysis of QCD sum rules. The equation to be analyzed can be written
down as

GOPE(x) =
∫ ∞

0
W(x,q0)ρ(q0)dq0. (3.1)

Here,x stands for the parameters occurring in the kernel W(x,q0), such as s andτ . Rigorously
solving Eq.(3.1) is an ill-posed problem since only a limited region of x can be used for the analyses
andGOPE(x) is available only with limited precision. Nevertheless, the MEM technique enables us
at least to statistically determine the most probable form ofρ(q0).

In the MEM analyses, we defineP[ρ|GH], which is the conditional probability ofρ given
GOPE and H, H representing additional knowledge on the spectral function such as positivity and
asymptotic values. Using Bayes’ theorem,P[ρ |GH] is rewritten as

P[ρ|GH] =
P[G|ρH]P[ρ|H]

P[G|H]
, (3.2)

whereP[ρ |H] is the so-called prior probability, andP[G|ρH] stands for the likelihood function.
The most probable form ofρ(ω) is obtained by maximizingP[ρ|GH]. Following [2, 11], we can
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obtain the specific form ofP[ρ|GH]:

P[ρ|GH] ∝ P[G|ρH]P[ρ|H]

= eαS[ρ ]−L[ρ ] ≡ eQ[ρ ], (3.3)

whereα is a positive number.S[ρ] is known as the Shannon-Jaynes entropy and can be given as

S[ρ] =
∫ ∞

0
dq0[ρ(q0)−m(q0)−ρ(q0) log(

ρ(q0)

m(q0)
)], (3.4)

where the functionm(ω) is called the default model and is an input of the MEM method. The
functionalL[ρ ] is normally used forχ2 fitting and can be obtained as

L[ρ] =
1

2(xmax−xmin)

∫ xmax

xmin

dx
[GOPE(x)−

∫ ∞
0 W(x,q0)ρ(q0)dq0]

2

σ2(x)
. (3.5)

The errorσ(x) in the above equation is determined from the uncertainty of the vacuum condensates
and is evaluated by the statistical method explained in [9]. Therefore, to get the most probable
ρ(ω), we have to solve the numerical problem of obtaining the form ofρ(ω) that maximizes Q[ρ ].

4. Results

Carrying out the analysis using the OPE dataGold ±
OPE (s,τ ,θ = 0.108π) with MEM, we obtain

the corresponding spectral functions. The results are shown in Fig.2. In the positive parity spectral
function, peaks are found at 970 MeV and 1930 MeV. As can be inferred from the error bars, the
lowest peak which corresponds to the nucleon ground state is statistically significant, while the
second one is not. For negative parity, peaks appear at 1540 MeV and 1840 MeV. As in the positive
parity case, the second peak is not statistically significant. The lowest peak appears close to the
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Figure 2: The positive (left) and negative parity (right) spectral functions extracted from MEM analyses of
the OPE dataGold ±

OPE (s,τ,θ = 0.108π). The parity of the corresponding spectral functions is shown on the
top right corner of each figure.
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experimentally observed lowest negative parity state N(1535). However, we can not conclude that
this peak only contains the contribution of the N(1535) due to its large width and the next lying
state N(1650). As can be understood from Eq.(2.4), it is difficult to extract information on the
physical width of some peak since the analysis uses an integral over the spectral function as an
input, which is not very sensitive on the peak width [2, 6]. This fact could cause N(1650) to merge
with N(1535) to one single peak. Therefore our conclusion to be drawn from this analysis is that
some negative parity excited state exists near 1540 MeV.

5. Summary

We have constructed parity projected nucleon QCD sum rules taking into account first order
αs corrections. Furthermore using the phase-rotated kernel, we have remedied some technical
problems of the usual nucleonic sum rules. We have then analyzed the nucleon spectral function in
the vacuum from these sum rules using the maximum entropy method and successfully extracted
information of both the positive and negative parity states. Because the difference of positive and
negative parity is essentially caused by the chiral condensate term of dimension 3, these results
provide novel evidence for the scenario in which the spontaneous breaking of chiral symmetry
causes the splitting between positive and negative parity baryon states.
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