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Pion-mass dispersion relation in the baryon sector
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By looking at the complex plane of the pion-mass squared we establish a dispersion relation

which the static quantities, such as baryon masses, magnetic moments, polarizabilities, should

obey. This dispersion relation yields insight into the differences between the heavy-baryon and

relativistic calculations in the baryon sector of chiral perturbation theory.
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1. Introduction

It is well-known that the chiral perturbation theory (χPT) is able to predict some ‘non-analytic’
dependencies of static quantities (masses, magnetic moments, etc.) on pion-mass squared, or the
quark mass (m2

π ∼ mq). It is therefore interesting to examine the origin of thesedependencies
arising by considering the analytic properties of chiral expansion in the entire complexm2

π plane.

(b) (c) (d)(a)

Figure 1: Examples of chiral-loop corrections to the nucleon mass. Nucleon (pion) propagators are denoted
by solid (dashed) lines.

t

Figure 2: The branch cut and the con-
tour defining the analyticity domain in
the complex plane oft = m2

π .

Considering the chiral loops with external nucleons
on shell, as in the graphs of Fig. 1 arising in the origi-
nal (manifestly Lorentz-invariant) formulation of baryon
χPT (BχPT) [1], we observe that they are analytic func-
tions of m2

π everywhere except for the branch cut along
the negative axis, see Fig. 2. In this case it is possible to
write down a simple dispersion relation in the pion-mass
squared [2]:

f (m2
π) =−

1
π

0
∫

−∞

dt
Im f (t)

t −m2
π + i0+

, (1.1)

where f is a chiral-loop correction to a static quantity, or
the static quantity itself; 0+ is an infinitesimal positive number.

Several applications of this dispersion relation have beendiscussed in [2]. Here we shall
focus on a study of large discrepancies between the leading-order heavy-baryon (HB) [3, 4] and
BχPT [1,5] calculations encountered in e.g. Refs. [6–9].

2. BχPT vs. HBχPT at O(p3)

The chiral expansion of a static quantityf is an expansion in the quark massmq around the
chiral limit (mq → 0), which in χPT becomes an expansion inp = mπ/Λχ , the mass of the
pseudo-Goldstone boson of spontaneous chiral symmetry breaking over the scale of chiral symme-
try breakingΛχ ≃ 4π fπ ≈ 1 GeV. Because of the branch cut in the complex-m2

π plane along the
negative real-axis, the chiral expansion is not a series expansion (otherwise, it would have a zero
radius of convergence), but rather an expansion in non-integer powers ofm2

π ∝ mq.
By writing the dispersion integral as:

f (m2
π) =−

1
π







0
∫

−Λ2
χ

+

−Λ2
χ

∫

−∞






dt

Im f (t)
t −m2

π
, (2.1)
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it is evident that the second integral can be expanded in integer powers ofm2
π/Λ2

χ . Hence this term
is of analytic form and can only affect the values of the LECs.Indeed, the physics above the scale
Λχ is not described byχPT and therefore its effect should be absorbable in the LECs.

The second integral generates an infinite number of analyticterms, while the number of LECs
to a given order of the calculation is finite. The higher-order analytic terms are present and not
compensated by the LECs at this order, but their effect should not exceed the uncertainty in the
calculation due to the neglect of all the other higher-orderterms. That is, the second integral can
be dropped, while the resulting cutoff-dependence represents the uncertainty due to higher-order
effects. We are thus led to examine the cutoff dependence of the pion-mass dispersion relation [10]:

f (m2
π ;Λ2) =−

1
π

0
∫

−Λ2

dt
Im f (t)
t −m2

π

(

m2
π

t

)n

, (2.2)

wheren indicates the number of subtractions around the chiral limit. Our main aim is to see at
which values of the cutoff any deviation occurs between the HB- and BχPT results. If the deviation
begins atΛ ≪ 1 GeV, then the differences between the two expansions cannot be reconciled in a
natural way. In the next section, this situation is examinedusing several specific examples, and for
each of them a different picture is obtained (cf. Fig. 3).

At chiral orderp3, the imaginary parts of the nucleon mass, the proton and neutron AMMs,
and the magnetic polarizability of the proton are given by:

ImM(3)
N (t) =

3g2
AM̂3

N

(4π fπ)2

πτ
2

(1
2

τ +λ
)

θ(−t) , (2.3a)

Imκ (3)
p (t) =

g2
AM̂2

N

(4π fπ)2

2π
λ

(1
2

τ +λ
)2[

1−
3
2

(1
2

τ +λ
)]

×θ(−t) , (2.3b)

Imκ (3)
n (t) =−

g2
AM̂2

N

(4π fπ)2

2π
λ

(1
2

τ +λ
)2

θ(−t) , (2.3c)

Imβ (3)
p (t) =−

(e2/4π)g2
A

(4π fπ)2M̂N

πτ
24λ 3

[

2−72λ +(418λ −246)τ

− (316λ −471)τ2+(54λ −212)τ3+27τ4
]

θ(−t), (2.3d)

whereM̂N ≃ 939 MeV is the physical nucleon mass,e2/4π ≃ 1/137 is the fine-structure constant,
and the following dimensionless variables are introduced:

τ =
t

M̂2
N

, λ =

√

1
4

τ2− τ . (2.4)

The corresponding HB expressions at orderp3 can be obtained by keeping only the leading in
1/M̂N term (i.e,λ ≈

√
−τ, etc.):

ImM(3)
N (t)

HB
=

3g2
AM̂3

N

(4π fπ)2

πτ
2

√
−τ θ(−t) , (2.5a)

Imκ (3)
p (t)

HB
=

g2
AM̂2

N

(4π fπ)2 2π
√
−τ θ(−t)

HB
= − Imκ (3)

n (t), (2.5b)

Imβ (3)
p (t)

HB
=

(e2/4π)g2
A

(4π fπ)2M̂N

π
12
√
−τ

θ(−t). (2.5c)
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The full, renormalized result for a given quantity is obtained by substituting these imaginary
parts into the dispersion relation of Eq. (2.2). The number of subtractions required in each case
differ: n= 2 for MN, n= 1 for AMMs, and no subtractions for polarizability. The resulting expres-
sions can be found in [10].

The heavy-baryon expressions can be obtained by picking outthe leading in 1/M̂N term, or
equivalently, by substituting the corresponding imaginary parts from Eq. (2.5), into the dispersion
relation. In the latter case, the same integral is encountered in all of the examples:

J(mπ ;Λ)≡
0

∫

−Λ2

dt
1

(t −m2
π)
√
−t

=−
2

mπ
arctan

Λ
mπ

. (2.6)

All of the above quantities toO(p3) in HBχPT are given by this integral, up to an overall constant,
and a factor ofm2n

π . n is the number of subtractions (or pertinent LECs) at this order. In Fig. 3, the
resulting cutoff-dependence of the above loop contributions is shown at the physical value of the
pion mass:mπ ≃ 139 MeV. Each quantity (mass, isovector AMM, and polarizability) is presented
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Figure 3: The cutoff-dependence
of leading-order loop contributions
to various nucleon quantities (mass,
isovector AMM, and proton’s mag-
netic polarizability) calculated in
HBχPT (blue dashed curves) and
BχPT (red solid curves).
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in a separate panel, where the results within the relativistic ChPT and using the HB expansion are
displayed.

The figure illustrates the following two features:

1. The HBχPT results have a stronger cutoff-dependence than the BχPT results, indicating a
larger impact of the unknown high-energy physics to be renormalized by higher-order LECs.
Quantitatively, the residual cutoff-dependence in HBχPT falls as 1/Λ in all of the considered
examples, while the dependence in the case of BχPT behaves as 1/Λ2 for MN, and as 1/Λ4

for both AMMs andβp.

2. The HB- and BχPT results are guaranteed to be the same at small values ofΛ, as can be seen
by taking derivatives of Eq. (2.2) with respect toΛ2, atΛ = 0. However, at finite values ofΛ
the differences are appreciable. Observing significant differences forΛ of ordermπ , as in the
case ofβp, indicates that the size of the 1/M̂N terms is largely underestimated in HBχPT.

3. Conclusion and outlook

The HBχPT and BχPT can be viewed as two different ways of organizing the chiral EFT
expansion in the baryon sector. While the heavy-baryon expansion is often considered to be more
consistent from the power-counting point of view, it appears to be less natural. Certain terms that
are nominally suppressed by powers ofmπ/MN, and hence dropped in HBχPT as being ‘higher
order’, appear to be significant in explicit calculations.

The problem is more pronounced in some quantities and less inothers. To quantify this, one
needs to note the power of the expansion parameter at which the chiral loops begin to contribute
to the quantity in question. For the considered examples of the nucleon mass, AMMs, and polar-
izability, this power index is 3, 1, and−1, respectively. The smaller the index, the greater is the
difficulty for HBχPT to describe this quantity in a natural way.

The negative index simply means that the chiral expansion ofthat quantity begins with neg-
ative powers ofmπ . Apart from polarizabilities, the most notable quantitiesof this kind are the
coefficients of the effective-range expansion of the nuclear force. The non-relativisticχPT in the
two-nucleon sector [11] failed to describe these quantities [12], thus precluding the idea of ‘per-
turbative pions’ in this sector. The present work encourages us to think that BχPT can solve this
problem in a way similar to the case of nucleon polarizabilities [8].
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