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1. The method

A systematic quantum field theoretical approach to few-nucleon systems has been pioneered
by Weinberg in Ref. [1], (see Refs. [2, 3] for recent review articles). Within this framework, the
nucleon-nucleon (NN) potential is defined as a sum of two-nucleon-irreducible time ordered dia-
grams emerging in non-relativistic effective field theory (EFT). It is calculated as a series based on
a systematic expansion in small parameters. A finite number of diagrams contribute to the effec-
tive potential at any finite order. The scattering amplitude is obtained by solving the Lippmann-
Schwinger (LS) or, equivalently, Schrödinger equation.

The problem of renormalization turned out to be highly non-trivial in Weinberg’s approach. To
resolve this problem we have recently suggested a new framework based on the manifestly Lorentz
invariant effective Lagrangian and time ordered perturbation theory [4, 5]. In this approach the
leading-order amplitude is obtained by solving the integral equation

T0
(

p⃗ ′, p⃗
)
=V0

(
p⃗ ′, p⃗

)
− m2

2

∫ d3k
(2π)3

V0

(
p⃗ ′ ,⃗k

)
T0

(⃗
k, p⃗

)
(k2 +m2)

(
E −

√
k2 +m2 + iε

) , (1.1)

where E =
√

p2 +m2 denotes the energy of a single nucleon in the center of mass frame. Here and
in what follows, we use the notation p ≡ |p⃗ |, k ≡ |⃗k |. The leading order (LO) NN potential can be
taken in the usual form

V0
(

p⃗ ′, p⃗
)
=CS +CT σ⃗1 · σ⃗2 −

g2
A

4F2 τ⃗1 · τ⃗2
σ⃗1 · (p⃗ ′− p⃗) σ⃗2 · (p⃗ ′− p⃗)

(p⃗ ′− p⃗)2 +M2
π

, (1.2)

where the standard notation is employed, see [4] for more details. Notice that equation (1.1) was
first obtained in Ref. [6]. Its iterations for the potential (1.2) generate only logarithmic diver-
gences which can be absorbed into redefinition of the couplings CS and CT , i.e. it is perturbatively
renormalizable. Partial wave projected equations corresponding to Eq. (1.1) have unique solutions
except for the 3P0 channel. We solved the problem of non-uniqueness of the solution in this par-
tial wave analogously to Ref. [7] by including a counter term of the form C(Λ)p′p/Λ2, with C(Λ)
being a cutoff dependent constant, in the leading-order potential [4].

2. Iterations of one-pion exchange and the role of the nucleon mass

Comparing Eq. (1.1) with the Lippmann-Schwinger equation of the non-relativistic heavy
baryon chiral perturbation theory [1] one might come to the (wrong) conclusion that the nucleon
mass plays the role of the cutoff in Eq. (1.1) and, being the hard scale, violates the power counting.
We now analyze the nucleon-mass dependence of renormalized loop diagrams by considering the
first two iterations of the one-pion exchange (OPE) potential in order to demonstrate explicitly that
the above naive interpretation is misleading.

We first consider the dimensionally regularized one-loop tensor integral corresponding to a
single iteration of the OPE potential

I1 =−m2

2

∫ dnk (p′a − ka)
(

p′b − kb
)
(pi − ki)(p j − k j)

(k2 +m2)
(

E −
√

k2 +m2
)
[(p′− k)2 +M2] [(p− k)2 +M2

π ]
, (2.1)
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where we drop, for the sake of simplicity, the +iε prescription for two-nucleon propagators. Its
expansion in inverse powers of the nucleon mass can be easily obtained by applying the method of
dimensional counting [8] and has the form

I1 = m2mn−3
∫ dnq qaqbqiq j

2q4 [q2 +1]
[√

q2 +1−1
] + . . . , (2.2)

where q is a (re-scaled) dimensionless integration variable and the ellipses refer to terms of higher
orders in the 1/m-expansion. The first term in Eq. (2.2) is momentum and pion-mass independent
and is cancelled by a counter-term associated with the coupling constants of the LO contact inter-
actions. Higher-order terms in Eq. (2.2) have either the same linear dependence on the nucleon
mass (for spacetime dimension n = 3) as in the heavy-baryon expression, or are suppressed by
additional inverse powers of m. Thus, the nucleon mass does not violate the power counting in our
new approach at one loop level.

We now turn to the two-loop tensor integral emerging from the second iteration of the OPE
potential

I2 =
m4

4

∫ dnk1dnk2 (p′a − k1a)
(

p′b − k1b
)
(k1i − k2i)(k1 j − k2 j)

(
k2µ − pµ

)
(k2ν − pν)(

k2
1 +m2

)(
k2

2 +m2
)(

E −
√

k2
1 +m2

)(
E −

√
k2

2 +m2
)

× 1
[(p′− k1)2 +M2

π ] [(k1 − k2)2 +M2
π ] [(p− k2)2 +M2

π ]
. (2.3)

Its expansion in inverse powers of the nucleon mass has the form [8]

I2 =
m4m2n−6

4

∫ dnq1dnq2 q1iq1 jq2µq2ν (q1a −q2a)(q1b −q2b)
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(
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1

)[√
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]
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(
1+q2

2

)[√
1+q2

2 −1
]
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+
m3mn−3

2
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(
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2 − p2

)
q4

1

(
1+q2

1

)[√
1+q2

1 −1
]
[(p− k2)2 +M2

π ]

+
m3mn−3

2

∫ dnq2dnk1 q2aq2bq2µq2ν (k1i − p′i)
(

k1 j − p′j
)

(
k2

1 − p2
)

q4
2

(
1+q2

2

)[√
1+q2

2 −1
]
[(p− k1)2 +M2

π ]
+ . . . . (2.4)

Renormalization of two-loop diagrams requires the addition of one-loop diagrams generated by a
single iteration of the one-loop counter terms, see Eq. (2.2), in order to subtract the sub-divergences
(and finite pieces) of one-loop sub-diagrams. Correspondingly, we need to add to the integral I2

two counter-term integrals:

I2ct =
m4mn−3

4

{∫ dnqdnk1 qaqbqµqν (p′i − k1i)
(

p′j − k1 j

)
(k2

1 +m2)
(√

p2 +m2 −
√

k2
1 +m2

)
q4 (1+q2)

[√
1+q2 −1

]
[(p′− k1)2 +M2

π ]

+
∫ dnqdnk2 qaqbqiq j

(
pµ − k2µ

)
(pν − k2ν)

(k2
2 +m2)

(√
p2 +m2 −

√
k2

2 +m2
)

q4 (1+q2)
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1+q2 −1
]
[(p− k2)2 +M2

π ]

}
. (2.5)
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The expansion of these counter-term integrals in inverse powers of the nucleon mass has the form

I2ct = −m4m2n−6

4

{∫ dnq2dnq q2µq2νqiq jqaqb

q2
2

(
1+q2

2

)(√
1+q2

2 −1
)

q4 (1+q2)
(√

1+q2 −1
)

+
∫ dnq1dnq q1iq1 jqµqνqaqb

q2
1

(
1+q2

1

)(√
1+q2

1 −1
)

q4 (1+q2)
(√

1+q2 −1
)}

− m3mn−3

2

{∫ dnqdnk2 qaqbqiq j
(
k2µ − pµ

)
(k2ν − pν)(

k2
2 − p2

)
q4 (1+q2)

(√
1+q2 −1

)
[(p− k2)2 +M2

π ]

+
∫ dnq2dnk1 qaqbqµqν (k1i − p′i)

(
k1 j − p′j

)
(
k2

1 − p2
)

q4 (1+q2)
(√

1+q2 −1
)
[(p− k1)2 +M2

π ]

}
+ . . . . (2.6)

Adding the expressions in Eqs. (2.4) and (2.6) together we observe that all terms proportional to
m3mn−3 cancel exactly. The remaining terms proportional to m4m2n−6 are momentum and pion-
mass independent. They are subtracted by the two-loop counter-terms generated by coupling con-
stants of the LO contact potential. The remaining terms have either the same quadratic dependence
on the nucleon mass as in the heavy-baryon approach or are suppressed by additional inverse pow-
ers of m. Analogously, it can be shown for any number of iterations that the hard dependence
on the nucleon mass is removed by renormalization yielding the amplitude which obeys the stan-
dard power counting of the heavy-baryon approach. The naive interpretation of the nucleon mass
playing the role of the cutoff in our new formulation is misleading because it is based on the com-
parison with the heavy-baryon result ignoring the crucial fact that the heavy-baryon expansion does
not commute with the expansion in inverse powers of the cutoff parameter.

3. Pion-mass dependence at leading order

As our new framework is perturbatively renormalizable and we do not attempt to integrate out
the momentum scale ∼

√
mMπ , see Ref. [10], there is no implicit quark- (pion-) mass dependence

of coupling constants associated with contact interactions. Therefore, we can straightforwardly
calculate the quark-mass dependence of two-nucleon observables order-by-order in the chiral ex-
pansion. Below we present an exploratory investigation of chiral extrapolations of the deuteron
binding energy and the scattering lengths in the 1S0 and 3S1 partial waves at LO.

There is one free parameter in each of the S-waves at this order. These parameters are given
by linear combinations of the low-energy constants CS and CT in Eq. (1.2) and are fitted to phase
shifts of the Nijmegen partial wave analysis at low energy, see Ref. [4] for more detail. The quark-
or, equivalently, pion-mass dependence of the NN amplitude at LO is entirely driven by the explicit
pion-mass dependence of the OPE potential. Figure 1 shows the resulting quark-mass dependence
of the deuteron binding energy together with the recent results of Ref. [11], see also Refs. [12, 13,
14, 15] for some earlier EFT calculations along these lines. Given the theoretical accuracy of our
LO analysis and of the calculation of Ref. [11] which relies on the resonance saturation hypothesis
for contact interactions, the agreement can be regarded as excellent. We have also calculated the

4



P
o
S
(
C
D
1
2
)
0
9
0

The NN problem in EFT reformulated J. Gegelia

0.5 1 1.5 2
m

q 
/ m

q0

-4

-3

-2

-1

0

E
  [

M
eV

]

Figure 1: Quark-mass dependence of the deuteron binding energy. The dashed line corresponds to the LO
of the modified Weinberg approach and the light-shaded band to N2LO result from Ref. [11]. The band
corresponds to the cutoff variation. The solid dot shows the deuteron binding energy at the physical value of
the quark mass.
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Figure 2: Quark-mass dependence of the inverse S-wave scattering lengths of 1S0 and 3S1 partial waves.
The dashed lines correspond to the LO of the modified Weinberg approach and the light-shaded bands to
N2LO results from Ref. [11]. The bands correspond to the cutoff variation. The solid dots show the inverse
scattering lengths at the physical value of the quark mass.

quark-mass dependence of the inverse scattering lengths which is shown in Fig. 2. For the singlet
scattering length we observe the same qualitative behavior as found in Ref. [11]. Somewhat larger
deviations from the N2LO analysis of that work are not surprising in view of the fact that the OPE
potential plays a fairly minor role in this channel.

4. Summary

In this conference contribution we outlined the modified formulation of baryon chiral per-
turbation theory for nucleon-nucleon interaction [4] and analyzed iterations of the leading order
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one-pion exchange potential. Naively, it might appear that the nucleon mass plays the role of an
ultraviolet cutoff in our approach. We have shown that this interpretation is misleading as it ig-
nores the fact that the heavy-baryon expansion does not commute with the expansion in inverse
powers of the cutoff parameter. For one- and two-loop diagrams corresponding to iterations of the
OPE potential, we explicitly demonstrated that renormalization indeed removes all nucleon-mass
dependence which violates the power counting.

As an application of our approach, we explored the quark-mass dependence of the deuteron
binding energy and the S-wave scattering lengths at LO in the EFT expansion. The obtained results
are in a good agreement with the recent calculation of Ref. [11].
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