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sitions inA≤ 9 nuclei, which include corrections arising from two-body meson-exchange electro-

magnetic currents. Two-body effects provide significant corrections to the calculated observables,

bringing them in excellent agreement with the experimentaldata. In particular, we find that two-

body corrections are especially large in theA = 9, T = 3/2 systems, in which they account for up

to∼ 20% (∼ 40%) of the total predicted value for the9Li (9C) magnetic moment.
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Figure 1: Diagrams illustrating one- and two-bodyχEFT EM currents entering at LO (eQ−2), NLO (eQ−1),
N2LO (eQ0), and N3LO (eQ1). Nucleons, pions, and photons are denoted by solid, dashed, and wavy lines,
respectively.

In this contribution, we present a set of Green’s function Monte Carlo (GFMC) calculations of
magnetic moments (m.m.’s) and M1 transitions inA ≤ 9 nuclei, which has been recently reported
in Ref. [1]. In these calculations, nuclear wave functions (w.f.’s) are constructed from a Hamil-
tonian consisting of the Argonne-v18 two-nucleon [2] and Illinois-7 three-nucleon potentials [3],
with which the computed GFMC ground- and excited-state energies are found to be in good agree-
ment with experiments [1]. The electromagnetic (EM) current operator includes, in addition to the
standard one-body convection and spin-magnetization terms for individual protons and neutrons, a
two-body meson-exchange-current (MEC) component. The latter is constructed within two distinct
frameworks, namely the standard nuclear physics approach (SNPA) illustrated in Refs. [4, 5], and
the pionfull chiral effective field theory (χEFT) formulation of Refs. [6, 7, 8]. In what follows, we
summarize on the methods and results discussed in Ref. [1].

1. GFMC Method and the Nuclear Hamiltonian

The EM transition matrix elements are evaluated in between w.f.’s which are solutions of the
Schrödinger equation, with a nuclear Hamiltonian, H, consisting of a kinetic term plus two- and
three-body interaction terms—in the present case, the Argonne-v18 and Illinois-7, respectively.
Nuclear w.f.’s are constructed in two steps. First, a trial variational Monte Carlo w.f. (ΨT ), which
accounts for the effect of the nuclear interaction via the inclusion of correlation operators, is gener-
ated by minimizing the energy expectation value with respect to a number of variational parameters.
The second step improves onΨT by eliminating excited states contamination. This is accomplished
by the GFMC calculation which propagates the Schrödinger equation in imaginary time (τ). The
propagated w.f.Ψ(τ) = e−(H−E0)τ ΨT , for large values ofτ , converges to the exact w.f. with eigen-
valueE0. Ideally, the matrix elements should be evaluated in between two propagated w.f.’s. In
practice, we evaluate mixed estimates in which only one w.f.is propagated, while the remaining
one is replaced byΨT . The calculation of diagonal and off-diagonal matrix elements is discussed
at length in Ref. [9] and references therein.
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The nuclear EM current operator is also expressed as an expansion in many-body operators.
The current utilized in the calculations accounts up to two-body effects, and is written as:

j(q) = ∑
i

ji(q)+∑
i< j

ji j(q) , (1.1)

whereq is the momentum associated with the external EM field. The one-body operator at lead-
ing order,i.e. the impulse approximation (IA) operator, consists of the convection and the spin-
magnetization currents associated with an individual nucleon [1], and it is diagrammatically repre-
sented in panel (a) of Fig. 1.

2. χEFT and SNPA EM currents

In the calculations, two models for the EM two-body MEC operators are tested, namely the
pionful χEFT and SNPA models. TheχEFT current operators are expanded in powers of pi-
ons’ and nucleons’ momenta,Q, and consist of long- and intermediate-range components which
are described in terms of one- and two-pion exchange contributions, as well as contact currents
which encode the short-range physics. These operators involve a number of Low Energy Constants
(LECs) which are then fixed to the experimental data. Currents from pionfulχEFT including up
to two-pion exchange contributions were derived originally by Park, Min, and Rho in covariant
perturbation theory [10]. More recently, Kölling and collaborators presented EM currents obtained
within the method of unitary transformations [11, 12]. Here, we refer to the EM operators con-
structed in Ref. [6, 7, 8], in which time-ordered perturbation theory is implemented to calculate the
EM transition amplitudes. These EM operators are diagrammatically represented in Fig. 1, where
they are listed according to their scaling ineQ, (wheree is the electric charge).

Referring to this figure, one-body contributions enter at LO, panel (a), and N2LO, panel (d),
and they are the IA current operator at LO and its relativistic correction, respectively. The NLO
term involves seagull and in-flight long-range contributions associated with one-pion exchange
(OPE). At N3LO we include the two-pion-range contributionsof diagrams (e)–(i), the one-pion-
range tree-level current involving aγπNN vertex of ordereQ2, diagram (j), the contact currents of
diagram (k), as well as the one-loop corrections of diagrams(l)–(o). The two-body operators have
a power-law behavior at large momenta, therefore a regularization procedure is implemented via
the introduction of cutoff function of the formexp(−Q4/Λ4) [8], whereΛ = 600 MeV.

The contact currents of diagram (k) are of minimal and non-minimal nature. The former are
linked to theχEFT potential at orderQ2 via current conservation; therefore they involve the same
LECs entering theχEFT NN interaction, and can be taken from fits to the NN scattering data. We
use the values obtained from the analysis of Refs. [16], withcutoff Λ = 600 MeV. Non-minimal
LECs entering the contact and tree-level currents at N3LO—diagrams (j) and (k), respectively—
need to be fixed to EM observables. The fitting procedure has been implemented by Piarulliet al.
in Ref. [8]. In that work, LECs multiplying isovector operators in the tree-level current are fixed by
saturating the∆-resonance [10] (a common strategy adopted, for example, inRefs. [13, 14, 15]).
The remaining three LECs are fixed so as to reproduce the deuteron, 3He, and3H m.m.’s.

The second model for the EM MEC operators utilized in the calculations is the SNPA model.
Two-body currents in the SNPA formalism, described at length in Refs. [4, 5] and references
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Figure 2: Left: Magnetic moments in nuclear magnetons forA ≤ 9 nuclei. Black stars indicate the ex-
perimental values [17, 18], while blue dots (red diamonds) represent preliminary GFMC calculations which
include the IA one-body EM current (fullχEFT current up to N3LO). Predictions are for nuclei withA > 3.
Right: Magnetic density in nuclear magnetons per fm3 for selected nuclei, including only the IA current
contribution.

therein, are separated into model-independent (MI) and model-dependent (MD) terms. The former
(MI) are derived from theNN potential, and their longitudinal components satisfy, by construction,
current conservation with it, thus their short-range behavior is consistent with that of the potential.
The dominant terms, isovector in character, originate fromthe static part of the potential, which is
assumed to be due to exchanges of effective pseudoscalar (PSor “π-like”) and vector (PV or “ρ-
like”) mesons. The associated currents are then constructed by using the PS and PV propagators,
projected out of the static potential [4]. At large inter-nucleon separations, where theNN potential
is driven by the OPE mechanism, the MI current coincides withthe standard seagull and pion-in-
flight OPE currents diagrammatically illustrated in panels(b) and (c), respectively, of Fig. 1. The
MD currents are purely transverse, and unconstrained by current conservation. The dominant term
is associated with excitation of intermediate∆ isobars. Additional and small MD currents arise
from the isoscalarρπγ and isovectorωπγ transition mechanisms [4, 5].

3. Results

Results for the m.m.’s ofA ≤ 9 nuclei indicate that two-body MEC corrections evaluated in
both the SNPA andχEFT models are qualitatively in agreement, and, when large,they boost the
IA in the direction of the experimental data. We summarize the m.m.’s calculations in the left panel
of Fig. 2, where we show the results obtained with theχEFT model. In this figure, black stars
represent the experimental data [17, 18]—there are no data for the m.m. of9B.1 For completeness,
we show also the experimental values for the proton and neutron m.m.’s, as well as their sum,
which corresponds to the m.m. of an S-wave deuteron. The experimental values of theA = 2–3
m.m.’s have been utilized to fix the LECs, therefore predictions are forA > 3 nuclei. The blue dots

1Electromagnetic moments of lithium isotopes have been mostrecently measured in Refs. [19, 20]. At the present
time, the tables and figures of this contribution and the preprint of Ref. [1] show, for these nuclei, the experimental data
taken from Refs. [17, 18].
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Figure 3: Left: Ratio to the experimentalM1 andE2 transition widths inA≤ 9 nuclei. Black stars with error
bars indicate the experimental values [17, 18], while blue dots (red diamonds) represent GFMC calculations
which include the IA one-body EM current (totalχEFT current up to N3LO).Right: M1 transition density
in nuclear magnetons per fm3 for selected nuclei, including only the IA current contribution.

labeled as GFMC(IA) represent IA theoretical predictions.The GFMC(IA) results reproduce the
bulk properties of the m.m.’s of the light nuclei consideredhere. In particular, we can recognize
three classes of nuclei, that is nuclei whose m.m.’s are driven by an unpaired valence proton, or
neutron, or ‘deuteron cluster’ inside the nucleus. This behavior can be appreciated by looking at
the IA magnetic densities represented in the right panel of Fig. 2, where the red upward-pointing
triangles are the contribution from the proton spin,µp[ρp↑(r)− ρp↓(r)], and similarly the blue
downward-pointing triangles are the contribution from theneutron spin. The green diamonds are
the proton orbital (convection current) contribution, andthe black circles are the sum. For example,
we can see that the m.m.’s of7Li and 9Li are driven by the unpaired proton, while the m.m. of8Li
it is due to a combined effect of the unpaired neutron acting against the proton.

In the left panel of Fig. 2, predictions, which include all the χEFT EM current contributions
illustrated in Fig. 1, are represented by the red diamonds labeled GFMC(TOT). In all of the cases
considered here—except for6Li and 9Be for which the IA results are already in very good agree-
ment with the experimental data, the predicted m.m.’s are closer to the experimental data when
the MEC corrections are added to the IA results. MEC corrections are particularly pronounced
in the isovector combination of theA = 9, T = 3/2 nuclei’s m.m.’s, for which the MEC SNPA
(χEFT) correction provides∼ 20% (∼ 30%) of the total calculated isovector contribution. While
the SNPA andχEFT models are in a reasonable good agreement when predicting the isovector
m.m.’s—which are driven by the long-range NLO OPE contribution, we find that isoscalar m.m.’s
evaluated within theχEFT model are usually in a better agreement with the experimental data [1].

In the left panel of Fig. 3, we show EM transitions induced by the M1 and E2 operators in
A ≤ 9 nuclei—E2 transitions are provided in IA only. In this figure, we show the ratios to the
experimental values of the widths [17, 18]. The latter are represented with the black stars along
with the associated experimental error bars, while the GFMC(IA) and GFMC(TOT) predictions are
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again represented by blue dots and red diamonds, respectively. For the M1 transition in IA, we also
provide their transition densities which are illustrated in the right panel of Fig. 3. As before, the
red upward-pointing triangles are the contribution from the proton spin term, the blue downward-
pointing triangles are from the neutron spin, the green diamonds are from the proton orbital term,
and the black circles are the total IA contribution. For example, for the lithium isotopes, the M1 IA
transitions are predominantly from the proton spin term,i.e., these are almost pure proton spin-flip
transitions. While, for7Be and8B, the neutron spin term is the most important, but with some
contribution from the proton spin and orbital terms. The M1 results summarized in the left panel
of Fig. 3, indicate that, also for these observables, predictions which account for MEC corrections
are closer to the experimental values, but for the transition in 8Li, for which the experimental error
is large, we cannot determine whether the GFMC(TOT) prediction is a better one.
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