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Here we develop a model equation of state which successfully parameterizes the thermodynamic
functions of hadron resonance gas model at chemical freeze-out and which allows us to natu-
rally explain the adiabatic chemical freeze-out criterion. The present model enables us to clearly
demonstrate that at chemical freeze-out the resulting hadronic mass spectrum used in the hadron
resonance gas model is not an exponential-like, but a power-like. We argue that such a property
of hadronic mass spectrum at chemical freeze-out can be explained by the two new effects found
here for wide resonances existing in a thermal environment: the near threshold thermal resonance
enhancement and the near threshold resonance sharpening. The effect of resonance sharpening
is studied for a sigma meson and our analysis shows that for the temperatures well below 92
MeV the effective width of sigma meson is about 50 to 70 MeV. Thus, the effect of resonance
sharpening justifies the usage of the sigma-like field-theoretical models for the strongly interact-
ing matter equation of state at such temperatures. Also we argue that the most optimistic hope
to find the quark gluon bags experimentally may be related to their sharpening and enhancement
in a thermal medium. In this case the wide quark gluon bags may appear directly or in decays
as narrow resonances that are absent in the tables of elementary particles and that have the width
about 50-150 MeV and the mass about or above 2.5 GeV.
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1. Introduction

The hadron resonance gas model [1] is a reliable theoretical tool to extract information about
the chemical freeze-out (FO) stage of the relativistic heavy ion collisions. However, the question
about the reliable chemical FO criterion has a long history [1, 2, 3]. Very recently this question was
thoroughly investigated again [4], using the most sophisticated version of the hadron resonance gas
model. Similarly to [5] it was found that none of the formerly suggested chemical FO criteria [2]
is robust, if the realistic particle table with the hadron masses up to 2.5 GeV is used. However, in
[4] the criterion of the adiabatic chemical FO was suggested. In [4] it was also shown that despite
an essential difference with the model used in [1] the same conclusion on the constant entropy
per particle at chemical FO is well reproduced by the chemical FO parameters found in [1, 5].
Furthermore, such a criterion of chemical FO is also consistent with the best description of the
Strangeness Horn puzzle found recently in [6]. Thus, it turns out that the criterion of the constant
entropy per particle at chemical FO is, indeed, the reliable one. It is interesting that the constant
entropy per particle at chemical FO was also found in [7], but the way of hard core repulsion used in
this work is too different from the traditional one used in the hadron resonance gas model [1, 4, 5]
and, hence, in contrast to the results of [4, 5], the model used in [7] leads to the simultaneous
fulfillment of a few chemical FO criteria.

Despite the long history of this question until recently there was no a single attempt to un-
derstand what is the physical reason behind any of the chemical FO criterion. Only last year this
problem got an adequate interest of theoreticians [3]. Here we develop an alternative approach and
present a simple model equation of state which not only well describes the chemical FO thermody-
namic parameters and reproduces the constant value of the entropy per particle at the chemical FO,
but in addition it allows us to elucidate the real mass spectrum of mesons and baryons that generate
such a criterion. As it will be shown below the real mass spectrum of hadrons, i.e. the density
of hadronic states, is very much different from the Hagedorn mass spectrum which is traditionally
expected to emerge already for hadrons with masses above 1.2 GeV [8, 9, 10]. However, below
we demonstrate that the real mass spectrum of hadrons extracted from the adiabatic chemical FO
model is not an exponential, but a power-like and the reason for such a behavior is an existence
of many wide resonances. In this work we also show how at chemical FO a thermal medium es-
sentially modifies the resonance mass distribution in case of large width leading to their narrowing
near the threshold. Based on these findings we suggest that the quark-gluon bags may be observed
at the NICA energy range as the narrow resonances (width about 50-150 MeV) with the mass about
or above 2.5 which are absent in the tables of elementary particle properties.

The work is organized as follows. In Section 2 we present a model equation of state and extract
its parameters from the data. The real mass spectrum of hadrons is extracted from the model and
compared to the empirical one in Section 3. In Section 4 we analyze a mass attenuation of wide
resonances in a thermal environment and discuss the related effects. Also in this section we argue
on how the near threshold resonance enhancement affects the mass spectrum of hadrons at chemical
FO. In Section 5 we perform a similar analysis for the quark-gluon bags are discuss the question
how they can look like in the experiments. Our conclusions are contained in Section 6.
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2. Model formulation

It is, indeed, a remarkable fact that at the chemical FO the entropy per particle deviates from
7.18 by about 8 % while the center of mass energy of collision changes from

√
sNN = 2.2 GeV to

√
sNN = 7 TeV [4]. In order to find the validity reason of the adiabatic chemical FO criterion we

parameterize the mesonic (with subscript M) and baryonic (with subscript B) pressure as follows

pM = CM T AM exp
[

µM−mM

T

]
, (2.1)

pB = CB T AB exp
[

µB−MB

T

]
, (2.2)

assuming that the integrated mass spectrum of mesons and baryons can be represented by the
constants Ca, Aa, ma, and µM with a ∈ {M,B}. Here T denotes the chemical FO temperature and
µB is the corresponding baryonic chemical potential. The pressure of antibaryons is, evidently,
related to that one of baryons as pB̄(T,µB) = pB(T,−µB). Note that Eqs. (2.1) and (2.2) represent
the mixture of gases of massive particles with the temperature dependent number of degrees of
freedom without the hard-core repulsion. The thorough inspection [1, 4] shows that for the realistic
values of hadronic hard-core radii below 0.45 fm the effect of hard-core repulsion can be safely
neglected for temperatures below 150-170 MeV. This fact is implemented in Eqs. (2.1) and (2.2).

Using the standard thermodynamic identities from Eqs. (2.1) and (2.2) one can find the particle
densities ρa = ∂ pa

∂ µa
= pa/T with a∈ {M,B, B̄} and entropy density s≡ ∂ (pM+pB+pB̄)

∂T at chemical FO
and get the following expression for entropy per particle

s
ρP

=
(AM + mM−µM

T )ρM + (AB + MB
T )(ρB +ρB̄) − µB

T (ρB−ρB̄)
ρM +ρB +ρB̄

, (2.3)

where the particle density is denoted as ρP ≡ ρM + ρB + ρB̄. In order to qualitatively explain the
reason of constant ratio s/ρP we note that there exist two regions where the baryonic chemical
potential roughly linearly decreases with the FO temperature [4, 1], i.e. µB(T )' µB(T0)+ µ ′B(T −
T0)' µB(T0)−µ ′B T0 + µ ′B T ' µ0

B + µ ′B T . Taking the latter into account, one can write (2.3) as

s
ρP
'

(AM + mM−µM
T )ρM + (AB−µ ′B + MB−µ0

B
T )(ρB +ρB̄) + 2 µB

T ρB̄

ρM +ρB +ρB̄
. (2.4)

Consider, first, the chemical FO temperatures below 135 MeV [1, 4]. Note that in (2.4) the term
µB
T

ρB̄
ρM+ρB+ρB̄

� 1 since at large values of the baryonic chemical potentials the antibaryons are ab-
sent, while their number becomes comparable with the number of baryons for µB

T → 0. Now it is
clear that one can get rid of the strong temperature dependence in (2.4), if the following conditions
are obeyed

mM−µM

T
' 0 ,

MB−µ0
B

T
' 0 . (2.5)

Then the entropy per particle at chemical FO can be cast as

s
ρP
' AB−µ

′
B− (AB−µ

′
B−AM)

ρM

ρM +ρB +ρB̄
' AB−µ

′
B , (2.6)
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i.e. up to a small correction the entropy per particle is constant. Strictly speaking, the above rough
estimates should be valid only for low chemical FO temperatures, when the number of mesons is,
indeed, a correction to the number of baryons. However, at high chemical FO temperatures the
baryonic chemical potential is also linearly dependent on T [4, 1], although with another value of
the derivative µ̃ ′B. Then at high chemical FO temperatures the entropy density per particle (2.5)
becomes s

ρP
' AB− µ̃ ′B− (AB− µ̃ ′B− AM) ρM

ρM+ρB+ρB̄
' AM + (AB− µ̃ ′B− AM) (ρB+ρB̄)

ρM+ρB+ρB̄
' Const,

since at these temperatures the fraction of baryons and antibaryons is almost a constant. Thus, the
entropy per particle at chemical FO is basically defined by the power Aa of the dominated degrees
of freedom (a = B for low T and a = M for high T) and by the speed of baryonic chemical potential
change with the temperature change, i.e. by µ ′B.

The above simplified consideration is well supported by a quantitative analysis. To demon-
strate this in Fig. 1 we show the results of fit of the particle densities obtained in [4] for chemical
FO. As one can see from Fig. 1 the quality of the chemical FO data for mesons (left panel) is much
higher than that one of the baryons and antibaryons and, hence, the corresponding description of
meson densities is excellent, while the description of baryon-antibaryon densities is good since the
value of χ2/do f = 7.8/11 is acceptable. The major part of this χ2/do f value is generated by the
three data points of the baryon-antibaryon density for the highest temperatures. We found the same
minimum, if these three points are excluded from the fit, although in this case the corresponding
value of χ2/do f is much better χ2/do f = 1.2/8. Our analysis shows that such a defect of the
present model can be repaired by the excluded volume corrections. However, here we prefer to
keep the model as simple as possible in order to demonstrate the main idea and, hence, hereafter
we do not consider the last three data points into further fitting.

Figure 1: Temperature dependence of meson particle density ρM (left panel) and baryon and antibaryon
particle density (ρB + ρB̄) (right panel) for the developed model. The data points with error bars are the
results of the fit obtained in [4] for the experimental hadronic multiplicities.
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The results of the density fit are as follows

MB ' 800.5±30MeV , mM−µM '−5±5MeV , (2.7)

CB ' (2.624±0.191) ·10−9 MeV1−AB

fm3 , CM ' (7.61±0.12) ·10−9 MeV1−AM

fm3 , (2.8)

AB ' 6.097±0.38 , AM ' 5.31±0.14 . (2.9)

Note that the conditions (2.5) are well reproduced by the fitting of the densities. It may, however,
look strange that for the vanishing value of mesonic chemical potential the meson mass parameter
mM in (2.7) can be negative. We note that the results of fitting show that condition (2.5) for mesons
is numerically well established, since the minimal value of the chemical FO temperature is about
50 MeV. Therefore, the result (2.7) for mesons means that within the error bars one has µM = 0
and mM = 0.

Using the above parameters we calculated (no additional fit!) the entropy density and found its
ratio to the particle density. The results are shown in the left panel of Fig. 2. From this figure one
can see that only the three points at highest chemical FO temperatures which were not included into
a fit are not well reproduced. Of course, as it is seen from the right panel of Fig. 2 the additional
fitting of the ratio s/ρP can improve the quality description of all analyzed points and one gets
χ2/do f ' 0.47.

Figure 2: Left panel: Comparison of the chemical FO temperature dependence of the entropy per particle
s/ρP for the developed model (circles) and for the chemical FO data found in [4] (squares with error bars).
Note that this ratio was just calculated using the parameters of Eqs. (2.7)-(2.9), i.e. no fitting was used.
Right panel: the same ratio as in the left panel, but fitted together with particle densities.

3. Extracted mass spectrum of hadrons

The model equations (2.1) and (2.2) allow us to directly find the mass spectrum of hadrons.
The question of whether the experimental mass spectrum of hadrons given in the Particle Data

5
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Group tables coincides with the spectrum suggested by R. Hagedorn is of great interest nowadays
[8, 9, 10]. However, almost all discussions of the hadron mass spectrum simply ignore the width
of resonances, whereas the large resonance width may essentially modify the spectrum [11, 12, 13,
14, 15, 16, 17, 18] and it may be even responsible for an absence of heavy excited resonances in
the empirical mass spectrum of hadrons [18, 19]. Therefore, it is interesting to study the effective
mass spectrum of hadrons having the real width. Since in the hadron resonance gas model [1, 4]
the resonance width is considered explicitly, its effect is also implicitly accounted for in the model
equations (2.1) and (2.2).

Figure 3: Ratio of the baryonic mass spectrum ρB(m) of the present model found at chemical FO defined by
(3.2) to the mass spectrum of all hadrons ρ

exp
B (m) taken from the Particle Data Group [20] and parameterized

according to (3.3) [21]. The full curve shows the ratio of integrated spectra ρB(m)/ρ
exp
B (m), while the dotted

curve demonstrates the ratio of the corresponding densities of states. The mass MB = 800.5 MeV is taken
from Eq. (2.7).

In order to elucidate the effective mass spectrum of baryons we rewrite their density in terms
of the mass integral of the momentum integral of the Boltzmann distribution function. Since the
effective baryon mass MB in (2.7) is large compared to the maximal value of the chemical FO
temperature, one can safely use the non-relativistic approximation for the momentum integration.
This means that the factor T

3
2 should be assigned to the momentum integration, while the remaining

T-dependence of the baryon (and antibaryon) particle density can be identically cast as

ρB = CB T AB−1 exp
[

µB−MB

T

]
= CB exp

[
µB

T

] ∞∫
MB

dm
(m−MB)AB−3.5

Γ(AB−2.5)
T

3
2 exp

[
−m

T

]

' (2π)
3
2 CB exp

[
µB

T

] ∞∫
MB

dm
(m−MB)AB−3.5

m
3
2 Γ(AB−2.5)

∫ d3k
(2π)3 exp

[
−
√

k2 +m2

T

]
, (3.1)

where in the last step of derivation we accounted for the fact that besides exp
[
−m

T

]
the momentum

6
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integration in non-relativistic case generates the factor (2π mT )
3
2 . Here Γ(A) is the usual gamma

function and, hence, one has Γ(3.6)' 3.717.
Since the original mass integral in (3.1) is the Laplace integral, then the representation (3.1)

uniquely defines the T -dependence of baryonic density and vice versa. Thus, from (3.1) one con-
cludes that at chemical FO the effective mass spectrum of baryons and antibaryons is rather a
power-like than an exponential-like:

∂ρB(m)
∂m

' (2π)
3
2 h̄3 CB

Γ(3.6)
(m−MB)2.6

m
3
2

, ⇒ ρB(m)
∣∣∣∣
m�MB

∼ m2.1 . (3.2)

Comparing the baryonic mass spectrum ρB(m) ≡
m∫

MB

dz ∂ρB(z)
∂ z obtained from the density of

states (3.2) with the parameterization

ρ
exp
B (m)'

[ m
537MeV

]5.72
, (3.3)

suggested in [21] to describe the experimental hadronic mass spectrum, one finds a great disagree-
ment between them! Indeed, as one can see from Fig. 3 these two mass spectra may deviate from
each other by about 25 times at m ' 1650 MeV and their asymptotic behaviors are completely
different, since ρB(m) ' m2.1 in (3.2), while ρ

exp
B (m) ' m5.72 in (3.3). Naturally, there arise two

questions, “Does it mean that one of these two mass spectra is wrong?" and “What is the reason for
so huge difference between these mass spectra?"

4. Effective width of wide resonances

In order to demonstrate that none of these two mass spectra is wrong and that at chemical
FO the large difference between these two hadronic mass spectra is due to the width of hadronic
resonances, we consider the Gaussian mass attenuation instead of the Breit-Wigner one that is used
in the actual simulations since in this case the evaluation is more transparent. Also such a treatment
would allow us to obtain some important conclusions on the mass spectrum of quark-gluon (QG)
bags which according to [18, 19] should unavoidably have the Gaussian mass attenuation. Note
also that the estimates below provide us with the lower limit, since the Gaussian mass distribution
vanishes much faster than the Breit-Wigner one. The typical term of the k-resonance that enters
into the mass spectrum of the baryonic particle density of the hadron resonance gas model is given
by Fk(σk)exp

[
µB
T

]
[1, 4], where

Fk(σk) ≡ gk

∞∫
0

dm
Θ
(
m−MT h

k

)
Nk(MT h

k )
exp
[
−(mk−m)2

2σ2
k

]∫ d3 p
(2π h̄)3 exp

[
−
√

p2 +m2

T

]
. (4.1)

Here mk is the mean mass of the k-th resonance, gk is its degeneracy factor, σk is the Gaussian
width which defines the true width of such a resonance as Γk = Qσk (with Q ≡ 2

√
2 ln2) and the

normalization factor is defined via the threshold mass MT h
k of the dominant channel as Nk(MT h

k )≡
∞∫

MT h
k

dm exp
[
− (mk−m)2

2σ2
k

]
. For the narrow resonances the term Fk(σk) converts into the usual thermal

7
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Figure 4: Temperature dependence of the mass distribution fk(m)/φ(mσ ,T ) (in units of 1/MeV, see Eq.
(4.2)) for σ -meson with the mass mσ = 484 MeV, the width Γσ = 510 MeV [25] and MT h

σ = 2mπ ' 280 MeV.
In the left panel the short dashed curves below the two pion threshold (vertical line at m−mσ =−204 MeV)
show the mass attenuation which does not contribute into the particle density (4.2). From the right panel one
can see the effect of wide resonance sharpening near the threshold, i.e. an appearance of a narrow peak in the
resulting mass distribution on the right hand side of the threshold which resembles an icy slide. For different
temperatures this mass attenuation is shown by the solid, the short dashed and the long dashed curves. The
σ -meson effective width was found numerically from these mass attenuations: Γ

e f f
σ (T = 50MeV) ' 62.5

MeV, Γ
e f f
σ (T = 55MeV)' 71.5 MeV and Γ

e f f
σ (T = 60MeV)' 82.5 MeV.

density of particles, i.e. for σk→ 0 one has Fk→ gk φ(mk,T ), where the following notation is used

φ(m,T )≡
∫ d3 p

(2π h̄)3 exp
[
−
√

p2+m2

T

]
.

A usage of Eq. (4.1) was heavily criticized in [24], but we find such a critique absolutely
inadequate for the states below the chemical FO. First of all, we note that in the approach of [24]
the effect of medium cannot be switched off at any finite particle density or temperature. This
means that according to the treatment of [24] (and many similar works!) all the hadrons whose
momentum spectra are frozen due to the absence of any strong interaction between them should
keep their momentum dependent width and mass which they acquired at the moment of kinetic
FO up to they are captured by the detectors. Hence, according to [24] all hadrons measured by
detectors, including the stable ones, are some resonances that ‘feel’ a thermal medium in which
they were produced long after the medium is gone. Second, all the ‘effects’ which the authors of
[24] claim to be of principal physical importance are reduced to a slight (by about 20 MeV) shift
of the mass attenuation peak and small change of its shape for the ∆33 resonance, although the
corresponding modification of the nucleon and pion properties the authors of [24] simply ignore.
In our opinion such modifications of the mass attenuation of the ∆33 resonance compared to the
‘crude’ approximation of Eq. (4.1) cannot be measured in heavy ion experiments even for such
narrow resonances as ∆33. Therefore, a serious discussion of similar ‘effects’ for heavy hadronic
resonances whose mass and width are often known with the accuracy of 100 MeV or 200 MeV (or
worse) [20] does not make any sense. Thus, at the present state of art there is no alternative to a

8
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physically transparent Eq. (4.1) to be used at and after the moment of chemical FO.

Figure 5: Temperature dependence of the resonance enhancement. The ratio R(T ) = fk
φ(mk,T ) is shown for

the hadronic resonance decays given in Table I. For wide resonances the effect of enhancement can be huge.

The momentum integral in (4.1) can be written using the non-relativistic approximation φ(m,T )'[
mT

2π h̄2

] 3
2

exp
[
−m

T

]
. Then to simplify the mass integration of (4.1) one can make the full square in

it from the powers of (mk−m) and get

Fk(σk) ≡ gk

∞∫
0

dm fk(m)' g̃k

∞∫
0

dm
Θ
(
m−MT h

k

)
Nk(MT h

k )
exp
[
−(m̃k−m)2

2σ2
k

][
mT

2π h̄2

] 3
2

exp
[
−mk

T

]
,(4.2)

where the following notations for an effective resonance degeneracy g̃k and for an effective reso-
nance mass m̃k

g̃k ≡ gk exp
[

σ2
k

2T 2

]
= gk exp

[
Γ2

k
2Q2 T 2

]
, (4.3)

m̃k ≡ mk−
σ2

k
T

= mk−
Γ2

k
Q2 T

, (4.4)

are used. From Eq. (4.2) one can see that the presence of the width, firstly, may strongly modify the
degeneracy factor gk and, secondly, it may essentially shift the maximum of the mass attenuation
towards the threshold or even below it. There are two corresponding effects which we named as
the near threshold thermal resonance enhancement and the near threshold resonance sharpening.
These effects formally appear due to the same reason as the famous Gamow window for the ther-
monuclear reactions in stars [22, 23]: just above the resonance decay threshold the integrand in
(4.2) is a product of two functions of a virtual resonance mass m, namely, the Gaussian attenuation
is an increasing function of m, while the Boltzmann exponent strongly decreases above the thresh-
old. The resulting attenuation of their product has a maximum, whose shape, in contrast to the
usual Gamow window, may be extremely asymmetric due to the presence of the threshold. Indeed,
as one can see from Fig. 4 the resulting mass attenuation of a resonance may acquire the form

9
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of the sharp and narrow peak that is closely resembling an icy slide. Below we discuss these two
effects is some details. Qualitatively the same effects appear, if in (4.2) one uses the Breit-Wigner
resonance mass attenuation instead of the Gaussian one.

Hadron mk Γk Decay MT h
k βk T +

k Γ
e f f
k ΓN

k
(MeV) (MeV) channel (MeV) (MeV) (MeV) (MeV)

σ -meson 484 510 σ → ππ 280 0.942 91.9 62.5 67.3
P33 1232 120 ∆→ πN 1080 2.98 11.6 43.5 N/A
P11 1440 350 N→ πN 1080 2.42 38.74 129.5 N/A
P33 1600 350 ∆→ π∆ 1372 1.53 50.4 68.7 80.8
P33 1600 350 ∆→ πN 1080 3.5 30.3 280. N/A
G17 2190 500 ∆→ ρN 1710 2.26 57.8 74.6 81.8

Table 1: The parameters of several hadronic resonances together with their decay channels that are used
to determine the quantities βk and T +

k . The last two columns show the corresponding effective width at
temperature T = 50 MeV found, respectively, numerically from Eq. (4.1) and analytically from Eq. (4.5),
when it can be applied.

From the definitions of the effective resonance mass (4.4) and the effective resonance de-
generacy (4.3) one can see that the effects of their change are strong for T � σk. This can
be clearly seen from Fig. 4, which demonstrates both of the above effects at low temperatures
for the σ -meson. A simple analysis shows that the effect of resonance sharpening is strongest,
if the threshold mass is shifted to the convex part of the Gaussian distribution in (4.2), i.e. for
MT h

k ≥ m̃k or for the temperatures T below T +
k ≡

σ2
k

mk−MT h
k
≡ σk

βk
. To demonstrate the effect of the

width sharpening we list a few typical examples for baryons in the Table 1. For T < T +
k and for

m > MT h
k the Gaussian mass distribution in (4.2) can be safely approximated as exp

[
− (m̃k−m)2

2σ2
k

]
≈

exp
[
− (m̃k−MT h

k )2

2σ2
k
− (m̃k−MT h

k )
σ2

k
(m−MT h

k )
]
. Now recalling the standard definition of the width for the

function f (x) = Θ(x)Const exp [−bx], one obtains the temperature dependent resonance effective
width near the threshold as

Γ
N
k (T ) ' ln(2)

1
T −

βk
σk

≡ ln(2)
1
T −

1
T +

k

, (4.5)

since for such a distribution function f (x) one gets f (ln(2)/b) = f (0)/2. Note that in evaluating
(4.5) we neglected the additional m1.5-dependence in (4.2), but one can readily check that numer-
ically such a correction is small. The rightmost column in Table 1 demonstrates that Eq. (4.5),
indeed, provides an accurate estimate for T < T +

k . The results of Table 1 also justify the usage
of σ -meson and the field-theoretical models based on the well known σ -model for temperatures
well below T +

σ ' 92 MeV. Of course, the present approach which is developed for the chemical
FO stage, when the inelastic reactions except for resonance decays are ceased to exist, cannot be
applied for earlier stages of heavy ion collisions. However, here we would like to stress that an
inclusion of the large width of σ -meson in the field-theoretical models of the strongly interacting
matter equation of state is very necessary. From the above analysis one can see that the large width
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inclusion can generate some new important physical effects like the wide resonance sharpening in
a thermal medium.

From Fig. 5 one can see that the resonance enhancement can be, indeed, huge for wide (Γ ≥
450 MeV) and medium wide (Γ ' 300− 400 MeV) resonances. This effect naturally explains
the strong temperature dependence of hadronic pressure (2.1) at chemical FO, which in its turn
generates the power-like mass spectrum of baryons (3.2). Clearly, the same is true for the mesonic
pressure (2.2) and mesonic mass spectrum in a thermal environment. However, we believe that a
detailed study of such a phenomenon requires a special investigation.

5. Effective width of QG bags

The first important conclusion from the analysis above is that there is no sense to discuss the
mass spectrum of hadronic resonances, empirical or Hagedorn, without a treatment of their width.
Furthermore, the same is true for the QG bags which, according to the finite width model [18, 19],
are heavy and wide resonances with mass MB larger than M0' 2.5 GeV and with the mean width of

the form ΓB ' Γ0(T )
[

MB
M0

] 1
2
, where Γ0(T ) is a monotonically increasing function of T and Γ0(T =

0) ∈ [400;600] MeV. This range of Γ0(T = 0) values corresponds to the cross-over temperatures
Tco ' 170− 200 MeV [18, 19] for vanishing baryonic density. The value Γ0(T = 0) = 400 MeV
is well consistent with the results of the present days lattice QCD thermodynamics [26, 27], but
there is no guaranty that the lattice QCD data will not change in the future. Therefore, below we
consider the whole range of values for the width Γ0(T ) analyzed in [18, 19].

There are two interesting features of QG bags which are related to the above treatment. Thus,
from the results of [18, 19] and from (4.5) one can find the temperature T +

B for the QG bags as

T +
B '

Γ2
0(T )

Q2 M0(1−ξB) '
1

(1−ξB) ·


11.5−26. MeV , if Γ0 ' 0.4−0.6 GeV at T = 0 ,

46−104 MeV , if Γ0 ' 0.8−1.2 GeV at T = 90 ,

140−315 MeV , if Γ0 ' 1.4−2.1 GeV at T = 170 ,

(5.1)

where ξB ≡ MT h
B

MB
denotes the ratio of the leading threshold mass MT h

B of the bag to its mean mass
MB. In (5.1) the temperature T is given in MeV. Clearly for different bags the range of ξB value
can be between 0 and 1. Therefore, according to above results the bags with ξB→ 1 should have
been essentially enhanced and sharpened as the ordinary resonances. Moreover, according to (4.5)
in this case for T � T +

B the QG bags should have had a small width ΓN
B '

T T +
B

T +
B −T ln(2) and, hence,

such QG bags should have been stable or, in other words, these bags should have been observed!
The reason why such bags are not observed in the experiments is naturally explained by the finite
width model [18, 19]: it is due to the effect called as the subthreshold suppression, i.e. a huge
suppression (of about fifteen to sixteen orders of magnitude compared to light hadrons!) of the
QG bags for temperatures below the half of the traditional Hagedorn temperature TH (for more
details see a discussion after Eq. (42) in [19]). Such a suppression is a manifestation of the color
confinement in terms of the QG bag width [19].

On the other hand Eq. (5.1) also shows that the only hope to observe the QG bags exists, if
ξB→ 1. Then for chemical FO temperatures much below T +

B such bags could have sufficiently long

eigen lifetime of about τB ∼ 1
ΓN

B
' T +

B −T
T T +

B ln(2) ≤
1

T ln(2) . Substituting T ' 0.5TH ∈ [80;90] MeV in the
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last inequality and using the estimate of Eq. (5.1) for T = 90 MeV with ξB = 0.9, one finds the most
optimistic estimate for the QG bag eigen lifetime as τB ≤ 3.3±0.3 fm/c. These estimates allow us
to make the second important conclusion that an appearance of sharp resonances (baryonic or/and
mesonic) with the width in the interval between 50 to 70 MeV at the chemical FO temperatures
close to TQGB ' 85± 5 MeV that have the mass above 2.5 GeV and that are absent in the tables
of particle properties would be a clear signal of the QG bag formation. Their possible appearance
at chemical FO as metastable states of finite systems created in relativistic nuclear collisions is
justified by the finite width model [18, 19]. At higher temperatures such QG bags can be formed
too, but their width is larger and lifetime is shorter. The limiting values of ξB at T for which the
effect of resonance sharpening can exist is determined by the relation Γ2

0(T )/T ≥ Q2 M0 (1−ξB)
from which one can see that the condition ξB→ 0.9 can be relaxed, but in this case the temperature
of chemical FO gets higher.

In addition one has to account for the statistical probability of the QG bags appearance at a
given temperature T . Relatively to the nucleon the statistical probability of the QG bag of mass MB

is about W =
[

MB
MN

]1.5
exp
[

(MN−MB)
T

]
RB(T ), where MN ' 940 MeV is the nucleon mass and RB(T )

is the resonance enhancement factor in a thermal medium. For T = 140 MeV and MB = M0 ' 2.5
GeV one gets WB ' 3.85 · 10−5RB. Our analysis shows that for such temperatures the typical
resonance effective width values are about ΓB ' 100− 150 MeV while the typical values of the
resonance enhancement factor is about RB ' 10−100 and, hence, compared to nucleon the relative
statistical probability of such QG bags is about WB ' 3.85 · (10−4− 10−3), which is essentially
larger than the relative probability of the J/ψ meson WJ/ψ ' 1.19 ·10−6 at the same temperature.
Note that the chemical FO temperature T ' 140 MeV corresponds to the highest SPS energy of
collision at which the J/ψ mesons are safely measured. Note that the chemical FO temperatures
about TQGB ' 80− 140 MeV correspond to the center of mass energy of collision

√
sNN ∈ [4; 8]

GeV [1, 4], which is in the range of the Dubna Nuclotron and NICA energies of collision. This
energy range sets the most promising kinematic limit for the QG bag searches.

6. Conclusions

Here we present a simple model equation of state which successfully parameterizes the ther-
modynamic functions of hadron resonance gas model at chemical FO. Such a model with the tem-
perature dependent number of hadronic degrees of freedom allowed us to naturally explain the
adiabatic chemical freeze-out criterion that was found previously. In addition, this model allowed
us to find out that the effective mass spectrum of baryons used in the resonance hadron gas model
is not an exponential-like, but a power-like. Evidently, the same conclusion is valid for mesons, but
such an analysis will be published elsewhere.

In order to give a reason for the obtained difference between the effective baryonic mass spec-
trum and the empirical hadronic mass spectrum we analyzed the behavior of wide resonances in a
thermal environment and found two new effects occurring, if the chemical FO temperature is small
compared to the resonance width: the near threshold thermal resonance enhancement and the near
threshold resonance sharpening. Further analysis showed that for the temperatures well below 92
MeV the σ -meson can be rather narrow and it has the effective width of about 50 to 70 MeV. Thus,
accounting for the σ -meson large width in a thermal medium allows us to justify the usage of the
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σ -like field-theoretical models for the strongly interacting matter equation of state for temperatures
well below 92 MeV. Finally, we argued that the most optimistic hope to find the QG bags exper-
imentally would be related to their sharpening and enhancement by a thermal medium. Then the
QG bags may appear directly or in decays as narrow resonances of the width about 50-150 MeV
that have the mass about or above 2.5 GeV and that are absent in the tables of elementary particles.
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