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1. Introduction

The symmetry is inseparably connected with conception of beauty. At the same time, intrinsi-
cal beauty is achieved upon condition the symmetry has been breakdown a little and is incomplete.
This incompleteness gives mysteriousness and attractiveness to the Nature.

In particular, in modern physics there is a tendency to treat the broken conformal symmetry
as the basis of unification of all interactions. This is the reason to consider quantum chromody-
namics (QCD), Minimal Standard Model (SM) of electroweak interactions, and the Dirac version
of General Relativity (GR) with long range forces [1] in the framework of the conformal symme-
try principle. Our approach to all these theories (QCD, SM, and GR) is based on their conformal
invariant classical versions and the Dirac Hamiltonian scheme in a definite frame of reference [2].
It will be proposed that conformal symmetry can be broken at the quantum level by the normal
ordering of field operators, which leads to their condensates and Casimir energies.

2. Low Energy QCD

The QCD description of hadrons is based on the non-Abelian generalization of the QED de-
scription of bound states [3, 4] in concordance with irreducible representations of the Poincaré
group [5, 6], and the Dirac gauge invariant quantization [7], where the potential components are
separated from radiation ones in a definite frame of reference.

Let us begin from the standard definition of Poincaré-invariant (P-inv) and gauge invariant
(G-inv) S-matrix elements. Recall that the S-matrix elements are defined as the evolution operator
expectation values between in- and out- states

Min,out︸ ︷︷ ︸
P−inv,G−inv

= 〈out|︸︷︷︸
P−variant

Ŝ[ ˆ̀]︸︷︷︸
P−variant,G−inv

|in〉︸︷︷︸
P−variant

. (2.1)

The in- and out- states are the rays defined as the products of the P-variant representations [8]

〈out|= 〈∏
J

PJ,sJ
∣∣, |in〉= ∣∣∏

J
PJ,sJ〉, (2.2)

where PJ,sJ are the total momentum and spin of a state (J). This means that all particles (elemen-
tary and composite) are far enough from each other to neglect their interactions in the in- and out-
states. These irreducible representations form a complete set of states. The frames of reference

are distinguished by the eigenvalues of the appropriate time-like operator ˆ̀
µ =

P̂µ

MJ
(where MJ is

a particle mass). This operator acts in the complete set of these states:

ˆ̀
µ |P,s〉=

PJµ

MJ
|PJ,s〉. (2.3)

The Bogoliubov–Logunov–Todorov rays (2.3) can include bound states [3, 4].
In a definite frame of reference the gauge invariance of the S-matrix elements (2.1) can be

achieved via the Dirac Hamiltonian approach to QED of 1927. This approach was based on the
constraint-shell action [7]

W Dirac
QED =WQED

∣∣∣δWQED

δA`
0

=0
, (2.4)
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where the component A`
0 is defined by the scalar product A`

0 = Aµ`
µ = (A · `) of the vector field Aµ

and the unit time-like vector `µ characterizing the frame of reference (2.3).
The gauge condition was established by Dirac as the first integral of the Gauss constraint∫ t

dt
δWQED

δA`
0

= 0, t = (x · `). (2.5)

In this case, the S-matrix elements (2.1) are relativistic invariant and independent of the frame
reference provided the condition (2.3) is fulfilled [9].

The generalization of the Dirac Hamiltonian approach to QED of 1927 to any frame was
discussed by Heisenberg and Pauli’s in 1930 [10]. It was their question to von Neumann who
suggested them to go back to the initial Lorentz-invariant formulation and choose the comoving
frame and repeat the gauge invariant Dirac scheme in this frame. The comoving frame time axis
`µ (2.3) for a bound state is proportional to the total momentum operator [5, 6].

The next concept of our scheme is the normal ordering of field operators in this comoving
frame. It is well known that the normal ordering of the oscillator Hamiltonian

:∑
n

p2
n+ω2

n q2
n

2
: = :∑

n
ωn

a+n a−n +a−n a+n
2

:=∑
n

ωn

(
a+n a−n +

1
2

)
leads to the vacuum (Casimir) energy ∑

n

ωn

2
[11]. The normal ordering of gluons Aa in the SU(3)

QCD including the product of covariant derivatives

∇
db(A)Ab

0∇
dc(A)Ac

0 = :∇db(A)Ab
0∇

dc(A)Ac
0:+M2

g Ad
0Ad

0

leads to their effective gluon mass Mg expressed in terms of the condensate Cgluon:

g2 f ba1d f da2c〈Aa1
i Aa2

j 〉=3g2[N2
c −1]δ bc

δi jCgluon = M2
g δ

bc
δi j,

where Nc = 3 and g2 is the QCD coupling constant. It yields the Yukawa interaction in QCD

VYu(k) =
4
3

g2 1
k2 +M2

g
.

The ladder diagram sum of Coulomb interaction in QED leads to the Schrödinger equation. In the
same way, in QCD, the ladder diagram sum of the Yukawa interaction between quarks leads to the
Salpeter equation [3, 4] and the Schwinger–Dyson one for the mass operator Σ(k)[12]:

Σ(k) = m0 + i
∫ dq0d3q

(2π)4 VYu(k⊥−q⊥) 6 `GΣ(q) 6 `, (2.6)

where GΣ(q) = (6 q−Σ(q))−1, 6 q≡ qµγµ , k⊥µ = kµ−`µ(k ·`), `2 = 1, 6 `≡ `µγµ , and m0 is a current
mass. In the reference frame `0 = (1,0,0,0), q⊥ = (0,q) we can put

Σ(q)≡M(q) =
√

M2 +q2 cosυ(q) ⇒ cosυ(q) =
M(q)√
M2 +q2

and take integration over q0 in the S–D equation (2.6) for the constituent quark mass M(p)

M(p) = m0 +
1
2

∫ d3q
(2π)3V (p−q)cosυ(q). (2.7)
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In agreement with the Goldstone theorem, in the limit of small current masses of d- and u- quarks
mu ' md � Mg and meson ones Mπ → 0 the Schwinger–Dyson equation (2.7) multiplied by a
factor (

√
2Fπ)

−1 coincides with the Salpeter equation

MπLπ

(2)(p)
2

=
√

p2 +M2
d(p) Lπ

(1)(p)−
1
2

∫ d3q
(2π)3V (p−q)Lπ

(1)(q), (2.8)

where Fπ = 93 GeV is the weak-decay coupling constant and

Lπ

(1)(p) =
Md(p)

√
2 Fπ

√
p2 +M2

d(p)
=

cosυd(p)√
2Fπ

, (2.9)

Lπ

(2)(p) =
2md√

2Fπ ·Mπ

(2.10)

are the wave functions. In this case, the normalization condition

4Nc

∫ d3q
(2π)3 Lπ

(1)(q)L
π

(2)(q) = Mπ

yields the Gell-Mann–Oakes–Renner (GMOR) relation [13]

M2
πF2

π = 2md < dd̄ > (2.11)

between the light quark condensate

< dd̄ >=
Nc

∑
n=1
〈qn(t,x)qn(t,x)〉= 4Nc

∫ d3q
(2π)3

1
2

cosυu(q),

the current mass md , the pion mass Mπ , and its weak decay coupling constant Fπ .
In the chiral massless limit (m0→ 0) the solution of the Schwinger–Dyson equation was given

in paper by Cherny et al. [14] in the form of a step-function. In the step-function approximation,
it was shown in [9] that the Schwinger–Dyson equation and the Salpeter one yield meson spec-
trum via the constituent quark masses Mconst ' 330 GeV. Using the GMOR relation (2.11) and the
constituent quark mass value ∼ 330 MeV we can define a conformal invariant as the ratio of the
condensate value to the cubed constituent mass

< dd̄ >

M3
d

=
M2

πF2
π

2mdM3
d
' 0.41±0.08. (2.12)

In the Dirac approach to QCD the color confinement means the complete destructive interfer-
ence of phase factors υ(n)(x) of the topological degeneration (n) of the color states [15], so that the
ordinary plane wave eipx is replaced by the sum over parameters of these phase factors

+∞

∑
n=−∞

υ
(n)(x) eipx︸︷︷︸

parton

= 0,

if x 6= 0. This means that amplitudes of the color particle creation are equal to zero. In this case,
the left side of the optical theorem for Ŝ = 1+ iT̂

∑
h
< ∗|T̂ |h >< h︸ ︷︷ ︸

hadrons

|T̂ |∗>= 2Im < ∗|T̂Perturbation Theory|∗>︸ ︷︷ ︸
partons

; (2.13)

is the sum over only colorless hadron states; whereas the right side of the optical theorem is known
as Feynman’s parton model [15], where all colorless states are marked by stars.
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3. Conformal Version of Minimal Standard Model

Now, in the framework of the condensate mechanism of conformal symmetry breaking, we
consider the conformal version of SM (CSM) [16]. For the beginning in the CSM Lagrangian one
keeps only the scalar field potential part forming the four interaction and the largest mass t-quark –
Higgs field interaction

Lint =−
λ 2

8
h4−gth t̄t, (3.1)

where gt = 1/
√

2. Here, we consider only the most intensive terms: the self-interaction and the
Yukawa ones of the top quark coupling constant gt . The normal ordering of a fermion pair f f̄ =:
f f̄ : +〈 f f̄ 〉 yields the condensate density of the fermion field 〈 f f̄ 〉 in the Yukawa interaction term
in Eq.(3.1). The t-quark condensate as a consequence of the normal ordering

Vcond(h) =
λ 2

8
h4−gt < tt̄ >h (3.2)

supersedes the phenomenological negative square mass term in the Higgs potential. The extremum
condition for the potential dVcond/dh|h=v = 0 yields the relation

v3 λ 2

2
= gt〈tt̄ 〉. (3.3)

This relation follows from the fact that the Higgs field has a zero harmonic v in the standard de-
composition of the field h over harmonics h = v+H, where H is the sum of all nonzero harmonics
with a condition

∫
d3xH = 0. The substitution h = v+H into the potential (3.2) leads to the result

Vcond(h)=Vcond(v)+
m2

H

2
H2 +

λ 2v
2

H3 +
λ 2

8
H4, (3.4)

which defines the scalar particle mass as

m2
H =

3gt〈tt̄ 〉
v

. (3.5)

The value of the t-quark condensate t̄t =: t̄t :−< tt̄ > is estimated using the conformal invari-
ant as the ratio of quark condensate and its cubed mass obtained above (2.12)

< tt̄ >
M3

t
=

< dd̄ >

M3
d
' 0.41±0.08,

where Mt = 173 GeV is inputting parameter yielding the value of the constant part of the Higgs
field v = 246 GeV. In the tree approximation we obtain the value of the scalar particle mass

m0
H = 130±15 GeV . (3.6)

Here, we have assigned 10% uncertainty into the ratio light quark condensate and its constituent
mass. Contributions to this mass from other electroweak boson condensates < W+W− > and
< ZZ > including the Higgs one < H H > are very small [16]

mH = m0
H

[
1+4

∆m2
H

v2

]1/2

≈ m0
H · (1+0.02) , (3.7)

in comparison with the accuracy of the constituent mass definition.
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4. Dirac Conformal General Relativity and Empty Universe Model

Instead of the Hilbert action WH = −(1/6)
∫

d4x
√
−gR(4) and an interval ds2 = gµνdxµdxν

in the Riemannian space-time in natural units: MPl
√

3/(8π) = c = h̄ = 1 we consider the Dirac
action of the General Relativity [2, 17] with a scalar dilaton field D

WCGR =−
∫

d4x
[√
−g̃
6

R(4)(g̃)e−2D−e−D
∂µ

(√
−g̃g̃µν

∂νe−D
)]

and a long distance interval expressed through the Fock linear gauge-invariant forms ω̃Fock
(α) [18]

d̃s
2
= g̃µνdxµdxν = ω̃

Fock
(α) ⊗ ω̃

Fock
(β ) η

(α)(β ), (4.1)

where η(α)(β ) is a local tangent Minkowskian space-time metrics. The frame of reference used
for the 4=3+1 foliation of the space-time manifold was given by Dirac [19] and Arnowitt–Deser–
Misner [20]:

ω̃
Fock
(0) = e−2DNdx0, ω̃

Fock
(b) = e(b)idxi +N(b)dx0. (4.2)

Here N is the lapse function presented as: N =N0(x0)N (x0,x1,x2,x3), where V−1
0
∫

V0
d3xN −1 = 1,

and V0 =
∫

d3x is the space volume; N(b) = N je(b) j are the shift vector components; e(b)i are the
space triad components with unit determinant.

The scalar dilaton field D can be decomposed over the harmonics

D(x0,x1,x2,x3) = 〈D〉(x0)+D(x0,x1,x2,x3),

where 〈D〉(x0) is the dilaton zero mode and D(x0,x1,x2,x3) is the sum of other modes with the
constraint

∫
V0

d3xD = 0. The dilaton zero mode plays the role of a reciprocal cosmological scale
factor logarithm

〈D〉=− lna = ln(1+ z), (4.3)

where z = (1−a)/a is the redshift.
Then, the action is split into the Newton-type part, graviton part and homogeneous one asso-

ciated with the dynamics of the Universe as a whole:

WCGR =Wpotential +W Fock
graviton +WUniverse. (4.4)

The first part of the action (4.4)

Wpotential =
∫

d4xN

−v2
D−

4
3

e−7D/24(3)e−D/2︸ ︷︷ ︸
Newtonian potentials

 ,
yields the Newtonian potentials in the frame comoving to the local volume element velocity vD = 0.

The second part of the action (4.4)

W Fock
graviton =

∫
d4x

N
6

[
v(a)(b)v(a)(b)− e−4DR(3)(e)

]

6
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describes the one-component graviton in a squeezed state [17], where the parameter of squeezing is
the dilaton. In the Beginning, according to the Bible (Genesis 1:2), the Universe was empty. From
physical point of view this means that the second and third parts of the action (4.4) were equal to
zero:

Wgraviton =Wpotential = 0. (4.5)

The third part of the action (4.4) describes the zero mode dynamics of the Universe as a whole:

WUniverse =−V0

τ0∫
τI

dx0N0︸ ︷︷ ︸
=dτ

[(
d 〈D〉
N0dx0

)2

+ρ
τ
Cas

]
. (4.6)

Here dτ = N0(x0)dx0 is a luminosity time interval connected with the conformal time interval dη

and the world one dt by the relations from (4.1) and (4.2):

dτ = a−2dη = a−3dt;

ρτ
Cas is the Casimir vacuum energy density corresponding to the luminosity time interval τ .

In the conformal units the Casimir energy density is able to be represented as a sum over all
physical field energies H( f )

Cas:

ρ
η

Cas(a) =
ρτ

Cas
a2 = ∑

f

H( f )
Cas

V0
=

H0

dCas(a)
, (4.7)

where dCas(a) is the conformal size of the Universe and H0 is the Hubble parameter.
Variations of the action with respect to two independent variables 〈D〉 and N0 give the equa-

tions of the Empty Universe

δWUniverse

δ 〈D〉
= 0 ⇒ 2

d
dτ

[
d〈D〉
dτ

]
=

dρτ
Cas

d〈D〉
, (4.8)

δWUniverse

δN0
= 0 ⇒

[
d〈D〉
dτ

]2

= ρ
τ
Cas. (4.9)

The latter equation rewritten in terms of the conformal cosmological factor a = exp(−〈D〉) and the
conformal density ρ

η

Cas(a) coincides with the Friedmann equation[
da
dη

]2

= ρ
η

Cas(a). (4.10)

Solution of the Friedmann equation (4.10) yields the conformal horizon

dhorison(a) = 2rhorison(a) = 2
a∫

0

da [ρη

Cas(a)]
−1/2. (4.11)

The horizon is defined as the distance that a photon covers within its light cone dη2−dr2 = 0 for
life-time of the Universe. In our case, the horizon coincides with the visual size of the Universe
dCas(a) in (4.7):

dCas(a) = dhorison(a). (4.12)

7
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The solution of equations (4.3), (4.7), (4.11), and (4.12)

dhorison(a) =
a2

H0
⇒ ρ

τ
Cas = H2

0 ≡ ρcr

yields the Hubble diagram of the description of Supernova Data in Conformal Cosmology [21, 22]
obtained as a consequence of the Dirac conformal GR in the void space approximation. In Figure 1
you can see that the conformal long space interval Rlong = r explains long Supernovae distances via
the dominant Casimir energy (see black line) without the cosmological constant in the framework
of the Empty Universe Model given by (4.5) and (4.12).

While the Lambda Cold Dark Matter standard model with a short space interval Rshort = ra
requires the Λ term dominance to explain the long Supernovae Distances.

The conformal long space interval in the CGR
explains the long Supernovae distances ↑
RSNeIa at z → via the dominant Casimir en-
ergy [21, 22] rhorizon(z)=H−1

0 (1+z)−2

[see black line].

The ΛCDM model with the short space inter-
val requires the Λ term dominance to explain
the long Supernovae distances
RSNeIa = RΩΛ=0.7,ΩM=0.3

[see green line].

Fig.1

In paper [2], the Empty Universe Model was presented in detail. It was demonstrated that the
Planck least action postulate applied to the Universe limited by its horizon yields the value of the
cosmological scale factor in the Planck epoch. In other words, the Planck least action postulate

WUniverse = ρcrV
(4)
hor (aPl) = M2

PlH
2
0

1
H4

0

(1+ zPl)
−8

32
= 2π

yields the redshift at the Beginning: a−1
Pl = (1+ zPl)' 0.85 ·1015. One can see that in the Empty

Universe Model the Planck epoch coincides with the electro-weak one.
One can consider, in the tangent space-time, representations of the Weyl group [23] which

includes besides of the Poincaré group the scale transformations. This means that a massive particle
energy with respect to the luminosity time interval: dτ = dη/a2 takes the form

ωτ(a) = a2
√

k2 +a2M2
0 .

This energy can be decomposed into different conformal weight parts

< ω
(n)
τ (a)>=

an

an
Pl

H0

8
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responsible for the representations of the Weyl group in the tangent Minkowskian space-time.
These representations give scales

< ω
(n)
τ (a)> |a=1 =

H0

an
Pl

for conformal weights n = 0, 1, 2, 3, 4 in GeV:

n=0 n=1 n=2 n=3 n=4
H0∼10−42 R−1

Celestial system∼10−27 TCMB∼10−12 MEW∼103 MPl
√

3/(8π)∼1018

Thus, conformal weights of the Weyl group representations with respect to the luminosity
energies give us the present-day (a = 1) mass scales of an order of the electroweak scale energy for
n = 3, a photon energy for n = 2 of an order of the CMB temperature, and nonrelativistic energy
ω

(1)
τ (a) = ak2/(2M0) for n = 1 of an order of the Celestial system inverse size. The Weyl group

representations leads to the classification of energy scales that points out the common origin of
conformal symmetry breaking in both GR and SM.

The intensive creation of primordial gravitons and Higgs bosons is described assuming that
the Casimir vacuum energy is the source of this process [2].

The Casimir energy is the source of creation of
1090 Higgs particles [2]. This Figure, where
↗ is time-axis,

↑ is number of bosons NW,Z,h,

↘ is their momentum, shows us creation of
Nh ∼ 1090 Higgs particles at 1+ zPl ∼ 1015 dur-
ing the first 10−12sec.

Fig. 2.

The Casimir energy is the source of creation of 1090 Higgs particles that decay into 1087 photons
with CMB temperature ∼ 3 K in the conformal units.

5. Conclusion

At the present talk we tried to demonstrate the mysterious and intrigue fruitfulness of the
conformal symmetry applications: its "footprints" manifest themself on the whole accessible scale
– from quarks to horizons of the Universe. For illustration we superinduce explicitness in some
problems taken from various fields of theoretical physics: application of the low energy Gell-
Mann–Oakes–Renner relation to QCD, appearance of the Higgs particle mass in Minimal Standard
Model of electroweak interactions without having used the Higgs potential, interpretations of new
observational cosmological data in framework of the Conformal GR. Everywhere the conformal
symmetry breaking is manifested via the condensate mechanism at the quantum level of description
of phenomena.

9
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