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The purpose of the article is to study the surface operatani®U(2) non-Abelian gauge field
theory. We analyse abelian projection of 86(2) symmetry to théJ (1) group calculating the
Witten parameter by the lattice method. We have used mugtiend multi-hit algorithms for the
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as the order parameter of confinement-deconfinement pleasitiion.
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1. Introduction

In the four-dimensional gauge filed theory the most impdrpanbes for the phase states are
the Wilson and t'Hooft line operatros that are difined on ditaensional curves in the space-time.
For example, these line-operators define order parametetsd confinemnet-deconfiment phase
transition of the QCD vacuum. However, for more detail ustierding of four-dimensional gauge
field theory dynamics we need additional probes expressaipbsators defined on the subspaces
with higher dimensions. Possible candidates are opertitatsre defined on the two-dimensional
surface in the four-dimensional space-time.

As an example we consider applications of the surface apet@study of the phase properties
of QCD. One of the possible explanations of the quark confarns the condensation of magnetic
monopoles in the vacuum [1] as dual superconductor modeksBTS theory of superconductivity
explains superconductivity as the result of the condemsaif electric chargers to cooper pairs.
In this case a string occurs between monopoles. In a duarcumiuctor an analogous effect
occurs through the condensation of magnetic charges (alssdcmagnetic monopoles), and a
string connects electrically charged particles. Accaydim’t Hooft [2], monopoles can appear as
a result of partial break of gauge symmetry. In this work wealkiSU(2) symmetry savindJ (1)
group symmetry.

A surface operator [3] is sensitive to existence of monapdkewas first introduced by Witten
[4, 5]. It is determined by the divergence of the chromomégrfeeld through a closed surface.
We use the lattice calculations to study the structure of#teeium inSU(2) gluodynamics.

In non-abelian pure gauge theories, the expectation valukesge surface operators are dif-
ficult to compute via numerical simulation because the imseeof surface area makes the signal-
to-noise ratio decay very fast. We adapt the multilevel seh§6] introduced for line operators to
work with surface operators when area exceeds? fm

2. Witten parameter

In the trivial vacuum, for example, in electrodynamics, tretor flow of magnetic field
through a closed surface is identical to zero:

H.dS=0. 2.1)
f

In the lattice calculation we use a phase & therefore the identity (2.1) acquires the following
form:

ghFHaS = 1 (2.2)

wherek is a dimensional coefficient. In Abelian theories this idgniorks in a simply connected
space. If the space topology is non-trivial or a group synmrnistnon-Abelian the identity (2.2)
does not necessarily works. Hence, in lattice quantum cbdymamics we have:

e XEx g 2.3)

whereHy is the magnetic field vector on the lattice plaquette witrekkl AS, is a surface area of
the plaquette (with the normal vector in the center of thejpédte), and the integral is calculated
over a closed surface made up of lattice plaquettes.
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Thus, we consider the following value to be the Witten partame

Wo (S) = Re[T] e, (2.4)
S

wheref, is a plaquette angle. Essentially, the plaquette angleusatijative measure of the gauge
field impact on an external source moving along the contowr pifaquette. This angle relates to
magnetic field flow through the plaquette surface:

K/H-dsszA-dlzep, (2.5)
S C

where integration ovedl carried out on a path covering the surf&e
Let's rewrite the magnetic field flow:

/H -dS= /F.kdoik, (2.6)
S S

whereF is the gauge field tensadgoix is a surface element (we do not differ between upper and
lower indices because all the calculations are performdéukifuclidean space-time after the Wick
rotation), and, k = 1, 2, 3 is the space direction. In this work we consider the pureygdield
theory withSU(2) group symmetry. Thus, th@, relates to thé=,, by the following formula:

Fp =1 cosfy + 1NiG; sin6p, (2.7)

wheren; is a vector on the unit sphere; is the Pauli matrices, is a value of the gauge field
tensorF,, on the plaquette. Then, for til we can write the following definition:

6p = arccos(%Tr Fp> . (2.8)

All the phases are calculated on the surface of a cube in tiredimensional space-time. The
range of function arccdg) is [0, 7. In the gauge group) (1) the range of the angle i9,2].
Hence, on one side of the cube the phase is selectedaascos 3Tr Fp), whereas on the opposite
side itis —arccog 3 TrFy).

The Witten parameter is related not only to the chromomagffietd, but also to the correla-
tion function of an average plaquette which is defined as\igt

C(l)= <<1—%Ter(x)> <1—%Ter(x+I)> >X, (2.9)

whereF,; is the plaquette variable defined By = U;;UjxUiqUji, whereU;j, Ui, Uy, Ui are plaque-
tte link variables. The bigger surface we take, the smal¢s the correlation between plaquettes
located on the opposite planes of the cube. Thus, the fialsas the same correlation function
which in turn influences the Witten parameter.
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3. Witten parameter on the lattice
The partition function has the following formula:
Z= /(dU)e’S(U). (3.1)

We use the Wilson formalism of the lattice theory [7]. The@tfor SU(2) theory can be written
1 . .
asSU) =By (1— EReTr Fp>, where = 4/g2 andg, is the gauge coupling constant. We can
p

calculate any observed value of a physical quamityy the next formula:
(A = z-l/(dU)A(U)e-&UL (3.2)

whereA(U) is a physical quantity calculated on the lattice configoratl and the integration is
taken over all configurations with the weight equakt&").

In this approach we need to generate some quantity lattinigemation with the weight
e SY). This problem is solved with the use of Monte Carlo algorishf@]. Further we calcu-
late the observed physical quantity on these configuratams average them. To generate the
configuration we use cold start, cyclic boundary conditiansl other parameters shown in Ta-
ble 1. To calculate errors we use 99% confidence intervatetbiee for 50 configurations errors
are calculated as.o, whereg is the typical dispersion.

To study the Witten parameter we prepared a set of configuisatn both phases. We calculate
a Polyakov loop to verify the phase state on the configuratidhe loop is defined as follows

1T
L(T):%Trexp |gO/AOdt , (3.3)

0

wheret is a cyclic variable with period /I, T is the temperature on the lattice. The Polyakov loop
is the order parameter of confinement-deconfinement phassition. In the confinement phase it
equals zero, and in the deconfinement phase it is different frero. In the Table 2 we show lattice
characteristic used in the calculations. On the latticdPthlgakov loop is a Wilson line composed
of lattice links in the temporal direction and closed witke theriodic boundary condition. The
Polyakov loop on the lattice is defined by the following fotaiu

L(x) = :—LTrM_lUO(t,x), (3.4)
2]

whereUy (t,x) is the time direction link.

Table 1: Monte Carlo parameters.

Thermalization iteratior] 2000
Correlation iteration | 200
Quantity configurationg 50
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Table 2: Lattices used to search the volume dependence.

Phase Size lattice| S L(T)
Deconfinement{  4x 303 255 | 0.349+0.002
Confinement 414 2.55 | 0.0002+0.0006

\ i [yij | =/
Figure 1. The plane is divided into two pieces on each level of recuarsib shows that the phase on the

surface (surrounded by black solid line) is calculated efitist level of recursion, and 2 is computed on the
second level of recursion.
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In the lattice approach we select a cube in the 3d space (tloelives in the four-dimensional
space-time) with some length of the edge on the lattice. Has@is calculated on each plaquette
on the surface of the cube, the result is obtained by compoit these phases. Next we calculate
the Witten parameter at different points in the lattice qgunfation and average them. The final
result is obtained by averaging on the set of configurations.

We consider cubes with edge length ranging framd 13a (ais the lattice scale) and surface
area value ranging from 6 to 1014 plaquettes, respectiFelythe sake of statistical confidence we
use multilevel [6], multi-hit [9] algorithms and MPI paralism for fast calculations.

3.1 Multilevel

We can fractionize the cube into 6 planes. Thus, we need to leav to calculate the phase
on this plane. We use multilevel scheme to write a recursinetfon which makes the following:

1. If the depth of recursion exceeds some parantE@ih,a Or the current plane contains only
one plaquette, then the phase is calculated by the mubliilgatrithm and the function returns
this value of the phase.

2. The current plane is divided into two pieces along the axisre length of the plane edge is
maximum, see Figure 1.
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3. This function is called recursively for each piece of th@np and calculates the phase on
this plane¢ which is the sum of phases on individual pieces of the plartee ghasep is
appended to an arrdyp; }, wherei = 1...Ng, Ny is the constant.

4. When the amount of elemertsin the array{ ¢ } is equal to the numbe, then the function

returnsArg { Ny zcos¢.+|N¢ zsmtp. If the amount is less thaN, we perform a few

Monte Carlo runs on the current plane and turn back to step 3.

Then we test this function. For this purpose we select diffevalues of depth, ranging from 1
to 3, and calculate the dependence of the Witten parameteisarface area on some set of lattice
configurations. The multilevel algorithm applied to caltel the surface operators appears to have
very good convergence behaviour. The results of calculatior recursive depth equal to two and
three are close. The value of depth equals three in all alouk in this paper.

3.2 Multi-hit

The main idea of the multi-hit algorithm is that the phaselanplaquette is defined by bound
conditions. We can substitute the phase calculated on #lggiptte to the phase expressed by bound
links. We cannot do it analytically, but we can use Monte €aitforithm to obtain more accurate
phase value. For this purpose we calculate a set of phasesegularjuette. Between calculations
we do a few Monte Carlo runs on the plaquette. After that, thal fpbhase can be obtained by
averaging the set of phases.

These two algorithms give the best accuracy in the calanatof the Witten parameter. How-
ever, computing time increases. Therefore, we use MPI ircalgulations.

4. Results

All calculations are performed on 50 configurations in 1000h{s on each lattice configura-
tion. For both phases results are shown at the Figure 2. Wesayathat these two dependencies
are the same. To understand better the behaviour of therWgitiameter we fit our dependence as
follows

Wp(SV) =e 75 W, (4.1)

whereo is a surface coefficieny;is a volume coefficientSis a surface ared, is the cube volume.

We use minuit2 library from ROOT package [10] to fit numericasults. The Figure 2 shows
that the fitting is good itr, y # 0. Then in both phases the Witten parameter depends on tiee cub
volume and surface area.

If we look at the dependence ¢hwe see that the parameter vanishes in the continuum limit.
See Figure 3. Clearly, the vacuum expectation value is ggppd by the ultraviolet divergence of
self-energy which is proportional to the closed surfac@.atemeans that we have the divergence

a—0

of the surface coefficiend = o(a) — o, wherea is the lattice scale. The scale in the continuum
limit must tend to zero. The divergence corresponds to selérgy of coloured dipoles on the
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Figure 2: Dependence of the Witten parameter on a surface area in timement phase (up panel) and
comparison of fittings. Lattice size is 4andB = 2.55. The same can be observed in the deconfinement
phase (bottom panel).
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Figure 3: The dependence of the Witten parameter with diffef@nin the confinement phase — the left
panel. In the deconfinement phase — the right panel.
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Figure 4: Dependence of the on the lattice spacing in both phases.

surface. It is analogous to divergence in case of Wilsorsline
A
(TrPexp —/Audx,, ) ~ exp{—constdL/a}, (4.2)
c

wherelL is the perimeter of the Wilson ling, ais the lattice spacingy® is a coupling constant, and
we keep only the most divergent piece. A description of magiegrees of freedom and surface
operators may be found in Ref. [11].

The Figure 4 shows how depends on scala. Only o diverges in the continuum limit.
The volume coefficieny does not depend on lattice scale. According to the formul?) (#e can
suppose that surface divergence has the following form

0(a) = Opn+ v/, (4.3)

where gy, is the physical coefficient andyy, is the divergence coefficient. After fitting we ob-
tain opn = (0.091+ 0.007) fm~2, or (3.640.3) x 10* MeV2. This approximation is illustrated in
Figure 4.

One can say that the Witten parameter depends on a surfacaradeszolume in both phases.
Consequently, the Witten parameter cannot be considertdtkasder parameter of confinement-
deconfinement phase transition. This result is similar & lbhaviour of spatial Wilson loops
expectation value as the spatial Wilson loop also does msesthe phase transition. It might be
interesting to study surface operators to calculate thé&eWjtarameter on the cube with two spatial
axis and one temporal axis. In this case the parameter skenkk the phase transition.
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