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theory. We analyse abelian projection of theSU(2) symmetry to theU(1) group calculating the

Witten parameter by the lattice method. We have used multilevel and multi-hit algorithms for the

sake of statistical confidence. We have demonstrated that the Witten parameter depends on the

surface area and volume in both phases. Consequently, the Witten parameter cannot be considered

as the order parameter of confinement-deconfinement phase transition.
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1. Introduction

In the four-dimensional gauge filed theory the most important probes for the phase states are
the Wilson and t’Hooft line operatros that are difined on one-dimensional curves in the space-time.
For example, these line-operators define order parameters for the confinemnet-deconfiment phase
transition of the QCD vacuum. However, for more detail understanding of four-dimensional gauge
field theory dynamics we need additional probes expressed byoperators defined on the subspaces
with higher dimensions. Possible candidates are operatorsthat are defined on the two-dimensional
surface in the four-dimensional space-time.

As an example we consider applications of the surface operator to study of the phase properties
of QCD. One of the possible explanations of the quark confinement is the condensation of magnetic
monopoles in the vacuum [1] as dual superconductor models. The BCS theory of superconductivity
explains superconductivity as the result of the condensation of electric chargers to cooper pairs.
In this case a string occurs between monopoles. In a dual superconductor an analogous effect
occurs through the condensation of magnetic charges (also called magnetic monopoles), and a
string connects electrically charged particles. According to ’t Hooft [2], monopoles can appear as
a result of partial break of gauge symmetry. In this work we breakSU(2) symmetry savingU(1)
group symmetry.

A surface operator [3] is sensitive to existence of monopoles. It was first introduced by Witten
[4, 5]. It is determined by the divergence of the chromomagnetic field through a closed surface.
We use the lattice calculations to study the structure of thevacuum inSU(2) gluodynamics.

In non-abelian pure gauge theories, the expectation valuesof large surface operators are dif-
ficult to compute via numerical simulation because the increase of surface area makes the signal-
to-noise ratio decay very fast. We adapt the multilevel scheme [6] introduced for line operators to
work with surface operators when area exceeds 1 fm2.

2. Witten parameter

In the trivial vacuum, for example, in electrodynamics, thevector flow of magnetic field
through a closed surface is identical to zero:

∮
H ·dS ≡ 0. (2.1)

In the lattice calculation we use a phase likeeıϕ , therefore the identity (2.1) acquires the following
form:

eıκ
∮

H·dS ≡ 1, (2.2)

whereκ is a dimensional coefficient. In Abelian theories this identity works in a simply connected
space. If the space topology is non-trivial or a group symmetry is non-Abelian the identity (2.2)
does not necessarily works. Hence, in lattice quantum chromodynamics we have:

e
ıκ∑

k
Hk·∆Sk

6= 1, (2.3)

whereHk is the magnetic field vector on the lattice plaquette with index k, ∆Sk is a surface area of
the plaquette (with the normal vector in the center of the plaquette), and the integral is calculated
over a closed surface made up of lattice plaquettes.
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Thus, we consider the following value to be the Witten parameter:

Wp (S) = Re∏
S

eıθp, (2.4)

whereθp is a plaquette angle. Essentially, the plaquette angle is a quantitative measure of the gauge
field impact on an external source moving along the contour ofa plaquette. This angle relates to
magnetic field flow through the plaquette surface:

κ
∫

S

H ·dS = κ
∮

C

A ·dl = θp, (2.5)

where integration overdl carried out on a path covering the surfaceS.

Let’s rewrite the magnetic field flow:

∫

S

H ·dS =
∫

S

Fik dσik, (2.6)

whereFik is the gauge field tensor,dσik is a surface element (we do not differ between upper and
lower indices because all the calculations are performed inthe Euclidean space-time after the Wick
rotation), andi, k = 1, 2, 3 is the space direction. In this work we consider the pure gauge field
theory withSU(2) group symmetry. Thus, theθp relates to theFµν by the following formula:

Fp = 1̂ cosθp+ ıniσi sinθp, (2.7)

whereni is a vector on the unit sphere,σi is the Pauli matrices,Fp is a value of the gauge field
tensorFµν on the plaquette. Then, for theθp we can write the following definition:

θp = arccos

(
1
2

TrFp

)
. (2.8)

All the phases are calculated on the surface of a cube in the four-dimensional space-time. The
range of function arccos(x) is [0,π]. In the gauge groupU(1) the range of the angle is[0,2π].
Hence, on one side of the cube the phase is selected as+arccos

(
1
2TrFp

)
, whereas on the opposite

side it is−arccos
(

1
2TrFp

)
.

The Witten parameter is related not only to the chromomagnetic field, but also to the correla-
tion function of an average plaquette which is defined as follows:

C(l) =

〈(
1−

1
2

TrFp(x)

)(
1−

1
2

TrFp(x+ l)

)〉

x
, (2.9)

whereFp is the plaquette variable defined byFp =Ui jU jkUklUli , whereUi j , U jk, Ukl, Uli are plaque-
tte link variables. The bigger surface we take, the smaller gets the correlation between plaquettes
located on the opposite planes of the cube. Thus, the phaseθp has the same correlation function
which in turn influences the Witten parameter.
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3. Witten parameter on the lattice

The partition function has the following formula:

Z =

∫
(dU)e−S(U). (3.1)

We use the Wilson formalism of the lattice theory [7]. The action for SU(2) theory can be written

asS(U) = β∑
p

(
1−

1
2

ReTrFp

)
, whereβ = 4/g2

 andg is the gauge coupling constant. We can

calculate any observed value of a physical quantityA by the next formula:

〈A〉= Z−1
∫
(dU)A(U)e−S(U), (3.2)

whereA(U) is a physical quantity calculated on the lattice configuration U and the integration is
taken over all configurations with the weight equal toe−S(U).

In this approach we need to generate some quantity lattice configuration with the weight
e−S(U). This problem is solved with the use of Monte Carlo algorithms [8]. Further we calcu-
late the observed physical quantity on these configurationsand average them. To generate the
configuration we use cold start, cyclic boundary conditionsand other parameters shown in Ta-
ble 1. To calculate errors we use 99% confidence interval, therefore for 50 configurations errors
are calculated as 2.8σ , whereσ is the typical dispersion.

To study the Witten parameter we prepared a set of configurations in both phases. We calculate
a Polyakov loop to verify the phase state on the configurations. The loop is defined as follows

L(T) =
1
2

Tr exp


ıg

1/T∫

0

Adt


 , (3.3)

wheret is a cyclic variable with period 1/T, T is the temperature on the lattice. The Polyakov loop
is the order parameter of confinement-deconfinement phase transition. In the confinement phase it
equals zero, and in the deconfinement phase it is different from zero. In the Table 2 we show lattice
characteristic used in the calculations. On the lattice thePolyakov loop is a Wilson line composed
of lattice links in the temporal direction and closed with the periodic boundary condition. The
Polyakov loop on the lattice is defined by the following formula:

L(x) =
1
2

Tr
Nt−1

∏
t=0

U0(t,x), (3.4)

whereU0 (t,x) is the time direction link.

Table 1: Monte Carlo parameters.

Thermalization iteration 2000

Correlation iteration 200

Quantity configurations 50
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Table 2: Lattices used to search the volume dependence.

Phase Size lattice β L(T)

Deconfinement 4∗303 2.55 0.349±0.002

Confinement 414 2.55 0.0002±0.0006

1 1 1 1

2

2

2

2

Figure 1: The plane is divided into two pieces on each level of recursion. 1 shows that the phase on the
surface (surrounded by black solid line) is calculated on the first level of recursion, and 2 is computed on the
second level of recursion.

In the lattice approach we select a cube in the 3d space (the lattice lives in the four-dimensional
space-time) with some length of the edge on the lattice. The phase is calculated on each plaquette
on the surface of the cube, the result is obtained by composition of these phases. Next we calculate
the Witten parameter at different points in the lattice configuration and average them. The final
result is obtained by averaging on the set of configurations.

We consider cubes with edge length ranging from 1a to 13a (a is the lattice scale) and surface
area value ranging from 6 to 1014 plaquettes, respectively.For the sake of statistical confidence we
use multilevel [6], multi-hit [9] algorithms and MPI parallelism for fast calculations.

3.1 Multilevel

We can fractionize the cube into 6 planes. Thus, we need to learn how to calculate the phase
on this plane. We use multilevel scheme to write a recursive function which makes the following:

1. If the depth of recursion exceeds some parameterdepthmax or the current plane contains only
one plaquette, then the phase is calculated by the multi-hitalgorithm and the function returns
this value of the phase.

2. The current plane is divided into two pieces along the axiswhere length of the plane edge is
maximum, see Figure 1.
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3. This function is called recursively for each piece of the plane and calculates the phase on
this planeϕ which is the sum of phases on individual pieces of the plane. The phaseϕ is
appended to an array{ϕi}, wherei = 1...Nϕ , Nϕ is the constant.

4. When the amount of elementsϕ in the array{ϕi} is equal to the numberNϕ then the function

returnsArg

(
N−1

ϕ ∑
i

cosϕi + ıN−1
ϕ ∑

i
sinϕi

)
. If the amount is less thanNϕ we perform a few

Monte Carlo runs on the current plane and turn back to step 3.

Then we test this function. For this purpose we select different values of depth, ranging from 1
to 3, and calculate the dependence of the Witten parameter ona surface area on some set of lattice
configurations. The multilevel algorithm applied to calculate the surface operators appears to have
very good convergence behaviour. The results of calculations for recursive depth equal to two and
three are close. The value of depth equals three in all calculations in this paper.

3.2 Multi-hit

The main idea of the multi-hit algorithm is that the phase on the plaquette is defined by bound
conditions. We can substitute the phase calculated on the plaquette to the phase expressed by bound
links. We cannot do it analytically, but we can use Monte Carlo algorithm to obtain more accurate
phase value. For this purpose we calculate a set of phases on one plaquette. Between calculations
we do a few Monte Carlo runs on the plaquette. After that, the final phase can be obtained by
averaging the set of phases.

These two algorithms give the best accuracy in the calculations of the Witten parameter. How-
ever, computing time increases. Therefore, we use MPI in ourcalculations.

4. Results

All calculations are performed on 50 configurations in 1000 points on each lattice configura-
tion. For both phases results are shown at the Figure 2. We cansay that these two dependencies
are the same. To understand better the behaviour of the Witten parameter we fit our dependence as
follows

Wp(S,V) = e−σS−γV , (4.1)

whereσ is a surface coefficient,γ is a volume coefficient,S is a surface area,V is the cube volume.
We use minuit2 library from ROOT package [10] to fit numericalresults. The Figure 2 shows
that the fitting is good ifσ ,γ 6= 0. Then in both phases the Witten parameter depends on the cube
volume and surface area.

If we look at the dependence onβ we see that the parameter vanishes in the continuum limit.
See Figure 3. Clearly, the vacuum expectation value is suppressed by the ultraviolet divergence of
self-energy which is proportional to the closed surface area. It means that we have the divergence

of the surface coefficientσ = σ(a)
a→0
−→ ∞, wherea is the lattice scale. The scale in the continuum

limit must tend to zero. The divergence corresponds to self-energy of coloured dipoles on the
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Figure 2: Dependence of the Witten parameter on a surface area in the confinement phase (up panel) and
comparison of fittings. Lattice size is 414 andβ = 2.55. The same can be observed in the deconfinement
phase (bottom panel).
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Figure 3: The dependence of the Witten parameter with differentβ . In the confinement phase – the left
panel. In the deconfinement phase – the right panel.
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Figure 4: Dependence of theσ on the lattice spacinga in both phases.

surface. It is analogous to divergence in case of Wilson lines:

〈TrP exp



−

∫

C

∧
Aµ dxµ



〉 ∼ exp

{
−const g2L/a

}
, (4.2)

whereL is the perimeter of the Wilson lineC, a is the lattice spacing,g2 is a coupling constant, and
we keep only the most divergent piece. A description of magnetic degrees of freedom and surface
operators may be found in Ref. [11].

The Figure 4 shows howσ depends on scalea. Only σ diverges in the continuum limit.
The volume coefficientγ does not depend on lattice scale. According to the formula (4.2) we can
suppose that surface divergence has the following form

σ(a) = σph+σdiv/a2, (4.3)

whereσph is the physical coefficient andσdiv is the divergence coefficient. After fitting we ob-
tain σph = (0.091±0.007) fm−2, or (3.6±0.3) ∗103 MeV2. This approximation is illustrated in
Figure 4.

One can say that the Witten parameter depends on a surface area and volume in both phases.
Consequently, the Witten parameter cannot be considered asthe order parameter of confinement-
deconfinement phase transition. This result is similar to the behaviour of spatial Wilson loops
expectation value as the spatial Wilson loop also does not sense the phase transition. It might be
interesting to study surface operators to calculate the Witten parameter on the cube with two spatial
axis and one temporal axis. In this case the parameter shouldsense the phase transition.
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