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1. Introduction

The exclusive electrodisintegration of the deuteron is a useful instrument which makes it pos-
sible to investigate the electromagnetic structure not only of the bound state - deuteron but also
the scattering states of the neutron-proton (np) system. Many approaches have been elaborated
to describe this reaction for the last 40 years [1, 2, 3, 4, 5].The simplest of them considered the
electrodisintegration within a nonrelativistic model of the nucleon-nucleon (NN) interaction and
outgoing nucleons were supposed to be free [1] (the plane-wave approximation - PWA). Those
approaches were in a good agreement with experimental data at low energies. However, further
investigations have shown that the final state interaction (FSI) between outgoing nucleons, two-
body currents and other effects should be taken into accountto obtain a reasonable agreement with
existing experimental data at higher energies. Most of these effects have been considered within
nonrelativistic models [2, 3]. In relativistic models, FSIeffects could be calculated within quasipo-
tential approaches using the on-mass-shell nucleon-nucleon T matrix [4, 5].

One of the fundamental approaches used to describe of thenp system is based on the Bethe-
Salpeter (BS) equation [6]. The separable ansatz [7] for theNN interaction kernel was successfully
applied to solve this equation. However, the approach was not applicable for the most of high-
energy NN processes for a while since calculated expressions contained nonintegrable singularities.
The problem was solved in [8, 9, 10] where kernels of special type were proposed. Using them FSI
can be taken into account (in particular, considering the electrodisintegration) in a wide range of
energy.

In the present paper, the electrodisintegration cross section is calculated under different kine-
matic conditions of Bonn experiments [11, 12]. The rank-sixNN interaction potential MY6 [9]
is used to describe scattered states3S1-3D1 and the deuteron. The uncoupled partial-wave states
with total angular momentumJ = 0,1 (1S0, 1P1, 3P0, 3P1) are described by multirank separable
potentials [10].

The paper is organized as follows. In Sec.2, the exclusive three-differential cross section of
the d(e,e′p)n reaction is calculated within the relativistic impulse approximation. The used BS
formalism is presented in Sec.3. The details of calculations are considered in Sec.4. Then the
obtained relativistic results are compared with experimental data of the Bonn experiments [11, 12]
in Sec.5.

2. Cross section

When all particles are unpolarized the exclusive electrodisintegration of the deuterond(e,e′p)n
can be described by the differential cross section in the deuteron rest frame - laboratory system
(LS), which has the following form:

d3σ
dE ′

edΩ′
edΩp

=
σMott

8Md(2π)3

p2
p
√

s
√

1+η|pp|−Ep
√η cosθp

(2.1)

×
[

l0
00W00+ l0

++(W+++W−−)+2l0
+−cos2φ ReW+−−2l0

+−sin2φ ImW+−

−2l0
0+ cosφ Re(W0+−W0−)−2l0

0+ sinφ Im(W0++W0−)
]

.
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whereσMott =(α cosθ
2/2Ee sin2 θ

2)
2 is the Mott cross section,α = e2/(4π) is the fine structure con-

stant;Md is the mass of the deuteron;q = pe − p′e = (ω ,q) is the momentum transfer;pe = (Ee, l)
and p′e = (E ′

e, l
′) are initial and final electron momenta, respectively;Ω′

e is the outgoing electron
solid angle;θ is the electron scattering angle. The outgoing proton is described by momentum

pp (Ep =
√

p2
p +m2, m is the mass of the nucleon) and solid angleΩp = (θp,φ) whereθp is the

zenithal angle between thepp andq momenta andφ is the azimuthal angle between the (ee′) and
(qp) planes. Factorη = q2/s can be calculated through thenp pair total momentumP squared:

s = P2 = (pp + pn)
2 = M2

d +2Mdω +q2, (2.2)

defined by the sum of the protonpp and neutronpn momenta. The photon density matrix elements
have the following form:

l0
00 =

Q2

q2 , l0
0+ =

Q

|q|
√

2

√

Q2

q2 + tan2 θ
2
, l0
++ = tan2 θ

2
+

Q2

2q2 , l0
+− =− Q2

2q2 , (2.3)

whereQ2 = −q2 is introduced for convenience. The hadron density matrix elements have the
following form:

Wλλ ′ =Wµνε µ
λ εν

λ ′ , (2.4)

whereλ , λ ′ are photon helicity components [13], can be calculated using the photon polarization
vectorsε and Cartesian components of hadron tensor

Wµν =
1
3 ∑

sdsnsp

∣

∣< np : SMS| jµ |d : 1M >
∣

∣

2
, (2.5)

whereS is the spin of thenp pair andMS is its projection;sd , sn andsp are deuteron, neutron and
proton momentum projections, respectively. The matrix element< np : SMS| jµ |d : 1M > can be
written using the Mandelstam technique [14] as follows:

< np : SMS| jµ |d : 1M >= i ∑
n=1,2

∫

d4pCM

(2π)4 Sp
{

Λ(L −1)ψ̄SMS(pCM, p∗CM;PCM)Λ(L ) × (2.6)

Γ(n)
µ (q)S(n)

(

K(0)

2
− (−1)n p− q

2

)

ΓM
(

p+(−1)n q
2

;K(0)

)}

within the relativistic impulse approximation in LS. The sum overn = 1,2 corresponds to the in-
teraction of the virtual photon with proton and with neutronin the deuteron, respectively. The total
PCM and relativep∗CM momenta of the outgoing nucleons and the integration momentum pCM are
considered in the finalnp pair rest frame - center-of-mass system (CMS),p denotes the relative
np pair momentum in LS. To perform the integration, momentap, q and deuteron total momentum
K(0) = (Md,0) in LS are written in CMS using the Lorenz-boost transformation L along theq
direction. Thenp pair wave functionψSMS is transformed from CMS to LS applying the corre-
sponding boost operatorΛ. A detailed description ofψSMS , thenth nucleon interaction vertexΓ(n)

µ ,
the propagator of thenth nucleonS(n), and the deuteron vertex functionΓM can be found in our
previous works [15, 16].
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3. Separable kernel of NN interaction

The outgoingnp pair is described by theT matrix which can be found solving the inhomoge-
neous Bethe-Salpeter equation [6]:

T (p′, p;P) =V (p′, p;P)+
i

4π3

∫

d4kV (p′,k;P)S2(k;P)T (k, p;P), (3.1)

whereV is the NN interaction kernel,S2 is the free two-particle Green function:

S−1
2 (k;P) =

(

1
2
/P+/k−m

)(1)(1
2
/P−/k−m

)(2)
, (3.2)

andp (p′) is the relative momentum of initial (final) nucleons,P is the totalnp pair momentum.
To solve the BS equation (3.1) partial-wave decomposition [17] for theT matrix:

Tαβ ,γδ (p′, p;P(0)) = ∑
JMab

tab(p′0, |p′|; p0, |p|;s)(YaM(−p′)UC)αβ ⊗ (UCY
†

bM(p))δγ (3.3)

is used. HereP(0) = (
√

s,0) is the np pair total momentum in CMS,UC = iγ2γ0 is the charge
conjugation matrix. Indicesa,b correspond to the set2S+1Lρ

J of spinS, orbitalL and totalJ angular
momenta,ρ = + defines a positive-energy partial-wave state,ρ = − corresponds to a negative-
energy one. Greek letters{α ,β ,γ ,δ} in (3.3) are used to denote Dirac matrix indices. The spin-
angle functions:

YJM:LSρ(p)UC = iL ∑
mLmSm1m2ρ1ρ2

C
Sρ ρ
1
2ρ1

1
2ρ2

CJM
LmLSmS

CSmS
1
2m1

1
2m2

YLmL(p̂)Uρ1
m1

(1)(p)Uρ2
m2

(2)T
(−p)

are constructed using free nucleon Dirac spinorsu, v. It should be mentioned that only positive-
energy states withρ =+ are considered in this paper. Performing similar decomposition forV , the
BS equation for radial parts of theT matrix and kernelV is obtained:

tab(p′0, |p′|; p0, |p|;s) = vab(p′0, |p′|; p0, |p|;s) (3.4)

+
i

4π3 ∑
cd

+∞
∫

−∞

dk0

∞
∫

0

k2d|k|vac(p′0, |p′|;k0, |k|;s)Scd(k0, |k|;s) tdb(k0, |k|; p0, |p|;s).

To solve the resulting equation (3.4), a separable ansatz [7] for the interaction kernelv is used:

vab(p′0, |p′|; p0, |p|;s) =
N

∑
i, j=1

λi j(s)g
[a]
i (p′0, |p′|)g

[b]
j (p0, |p|), (3.5)

whereN is a rank of a separable kernel,gi are model functions,λi j is a parameter matrix. Substi-
tuting v (3.5) into BS equation (3.1), we obtain thet matrix in a similar separable form:

tab(p′0, |p′|; p0, |p|;s) =
N

∑
i, j=1

τi j(s)g
[a]
i (p′0, |p′|)g

[b]
j (p0, |p|) (3.6)

where:

τi j(s) = 1/(λ−1
i j (s)+hi j(s)), (3.7)
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and

hi j(s) = − i
4π3 ∑

a

∫

dk0

∫

k2d|k|
g[a]i (k0, |k|)g[a]j (k0, |k|)
(
√

s/2−Ek + iε)2− k2
0

(3.8)

are auxiliary functions,Ek =
√

k2+m2. Thus, the problem of solving the initial integral BS equa-
tion (3.1) turns out to finding functionsgi and parametersλi j of separable representation (3.5).
They can be obtained from a description of observables innp elastic scattering [9, 10, 18, 19, 20].

4. Final state interaction

To calculate FSI we need to consider the interactingnp pair. The outgoing nucleons are
described by the BS amplitude which can be written as a sum of two terms:

ψSMS(p, p∗;P) = ψ(0)
SMS

(p, p∗;P)+
i

4π3 S2(p;P)
∫

d4k V (p,k;P)ψSMS (k, p∗;P). (4.1)

The first term

ψ(0)
SMS

(p, p∗;P) = (2π)4χSMS(p;P)δ (p− p∗) (4.2)

is related to the outgoing pair of free nucleons,χSMS is a spinor function for two fermions. The
second term in (4.1) corresponds to the final state interaction of the outgoing nucleons. If we use
the following relation:

∫

d4k V (p,k;P)ψSMS (k, p∗;P) =
∫

d4k T (p,k;P)ψ(0)
SMS

(k, p∗;P)

then it can be transformed into

ψ(t)
SMS

(p, p∗;P) = 4πiS2(p;P)T (p, p∗;P)χSMS(p∗;P), (4.3)

here(t) means that this part of thenp pair wave function is related to theT matrix. Using the
partial-wave decomposition (3.3) expression (4.3) can be written as follows:

ψ(t)
SMS

(p, p∗;P) = 4πi ∑
LmJMa

CJM
LmSMS

Y ∗
Lm(p̂∗)YaM(p)φa,J:LS+(p0, |p|;s), (4.4)

wherep∗ = (0, p∗) with |p∗|=
√

s/4−m2 is the relative momentum of on-mass-shell nucleons in
CMS, p̂∗ denotes the azimuthal angleθp∗ between thep∗ andq vectors and zenithal angleφ . Since
only positive-energy partial-wave states are considered here the radial part is:

φa,J:LS+(p0, |p|;s) =
ta,J:LS+(p0, |p|;0, |p∗|;s)

(
√

s/2−Ep + iε)2− p2
0

. (4.5)

According to definition (3.4) spin-angle functionsY can be written as a product of Dirac matrices
γ in the matrix representation [15] as follows:

YaM(p) =
1√
8π

1
4Ep(Ep +m)

(m+ /p1
)(1+ γ0)GaM(m− /p2

), (4.6)

5
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a =
{

2S+1Lρ
J

}

GaM

1S+0 −γ5
3S+1 /ξ M
1P+

1

√
3

|p|(p1 ·ξM)γ5
3P+

0 − 1
2|p|(/p1

− /p2
)

3P+
1 −

√

3
2

1
|p|

[

(p1 ·ξM)− 1
2/ξ M(/p1

− /p2
)
]

γ5

3D+
1

1√
2

[

/ξ M + 3
2

1
p2 (p1 ·ξM)(/p1

− /p2
)
]

Table 1: Spin-angular partsGaM (4.6) for thenp pair; p1 = (Ep, p), p2 = (Ep,−p) are on-mass-shell mo-
menta,Ep =

√

p2+m2; γ matrices are defined as in [21].

matricesGaM are shown in Table 1. Decomposition (4.4) is considered in detail in [22]. Using
definition (4.1) and substituting (4.2), (4.4) into (2.6), the final expression for hadron current
< np : SMS| jµ |d : 1M > can be obtained. It consists of two parts. One of them:

< np : SMS| jµ |d : 1M >(0)= i ∑
n=1,2

{

Λ(L −1)χ̄SMS

(

p∗CM;PCM
)

Λ(L ) × (4.7)

Γ(n)
µ (q)S(n)

(

K(0)

2
− (−1)n p∗− q

2

)

ΓM
(

p∗+(−1)n q
2

;K(0)

)}

corresponds to the electrodisintegration in PWA. Another one:

< np : SMS| jµ |d : 1M >(t)= (4.8)

i
4π3 ∑

n=1,2
∑

LmJMJ L′lm′
CJMJ

LmSMS
YLm(p̂∗)

∞
∫

−∞

d pCM
0

∞
∫

0

(pCM)2d|pCM|
1

∫

−1

d cosθ CM
p

2π
∫

0

dφ ×

Sp
{

Λ(L −1)ȲJL′SMJ (pCM)Λ(L )Γ(n)
µ (q)× S(n)

(

K(0)

2
− (−1)n p− q

2

)

Y1lSm′

(

p+(−1)n q
2

)

}

×

t∗L′L(pCM
0 , |pCM|;0, |p∗|;s)

(
√

s/2−Ep + iε)2− p2
0

gl

(

p0+(−1)n ω
2
, p+(−1)n q

2
;K(0)

)

corresponds to the process when FSI is taken into account. Here gl denotes the radial part of the
deuteron vertex functionΓM. The part Sp{. . .} has been calculated using the algebra manipu-
lation package MAPLE. The three-dimensional integration over pCM

0 , |pCM| and cosθ CM
p has been

performed numerically using the programming language FORTRAN.

5. Results and discussion

The calculations of the deuteron electrodisintegration within PWA were considered in [9, 16].
As it was shown in [3, 23], a contribution of FSI effects increases with increasing nucleon ener-
gies or/and momentum transfer. The reaction near the threshold was considered in [23] (Sacley
experiments, see [24, 25]).
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BI BII BIII BIV BV

Ee, GeV 1.464 1.569 1.2 1.2 1.2

E ′
e, GeV min 1.175 1.118 0.895 0.895 0.895

max 0.800 0.800 0.800

θ , ◦ 21 21 20.15 20.15 20.15

pn, GeV/c min 0.314 0.500 0.126 0.197 0.197
max 0.660 0.773 0.564 0.423 0.488

θn, ◦ min 60.53 74.60 142.32 155.72 165.36
max 62.49 63.52 93.96 136.09 112.86

θqe, ◦ min 61.94 45.57 59.56 51.52 51.25
max 37.39 29.49 25.57 25.57 25.57

pp, GeV/c min 0.466 0.681 0.525 0.620 0.622
max 0.664 0.791 0.834 0.929 0.889

θp, ◦ min 35.82 45.12 8.42 7.52 4.47
max 61.68 60.90 42.40 18.41 30.40

θpe, ◦ min 97.77 90.68 68.00 44.00 56.00
max 99.08 90.39√

s, GeV min 1.9675 2.1375 1.98 2.04 2.04
max 2.2125 2.3325 2.28 2.28 2.28√

s−2m, GeV min 0.090 0.260 0.101 0.161 0.161
max 0.335 0.455 0.401 0.401 0.401

Q2, (GeV/c)2 min 0.257 0.255 0.154 0.145 0.145
max 0.206 0.209 0.106 0.106 0.106

ω , GeV min 0.162 0.348 0.148 0.210 0.210
max 0.422 0.568 0.476 0.476 0.476

|q|, GeV/c min 0.532 0.613 0.420 0.435 0.435
max 0.620 0.729 0.577 0.577 0.577

Table 2: Kinematic conditions considered in the paper. Here all quantities are given in LS. In addition to
those which are defined in the text, they are: angleθqe between the beam and the virtual photon; neutron
momentumpn and angleθn between the neutron and the virtual photon (pp,θp – the same for the proton);
θpe (θqe) – the angle between the beam and the proton (virtual photon).

In the paper the differential cross section (2.1) has been calculated under five kinematic con-
ditions of the Bonn experiments [11, 12] (described in Table2) and is shown in Figs.1-5. The
calculations have been performed within the relativistic impulse approximation for two different
cases: when the outgoing nucleons are supposed to be free (PWA) and when the final state interac-
tion between the nucleons is taken into account (FSI). The partial-wave states of thenp pair with
total angular momentumJ = 0,1 have been considered. The used relativistic model consists of two
parts: the separable potential MY6 [9] for the bound (deuteron) and scattered3S1-3D1 states and
separable potentials of various ranks [10] - for all other partial-wave states (1S0, 1P1, 3P0, 3P1).

In Figs.1-5, relativistic PWA (solid red line) and FSI (dashed blue line) calculations are shown

7
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as a function of
√

s.
As it is seen from Figs.1-5, the effect of FSI increases the cross section for kinematic condi-

tions [11, 12].
In Fig.2, the calculation with FSI describes the experimental data on

√
s from 2.15 GeV to 2.3

GeV and differs from experimental data starting from 2.3 GeV. Calculations of the cross section
shown in Figs.1-2 require additional investigations at high s (for instance, the influence of non-
nucleon degrees of freedom).

In Figs.3-5, PWA and FSI calculations under the kinematic conditions [12] are shown. The
effect of FSI is small at the threshold but it becomes bigger with increasing

√
s.

The inelasticity effects are nonzero for kinematic conditions of Bonn experiments [11, 12].
However, they will be discussed in a separate paper.
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Figure 1: Cross section (2.1) depending on
√

s cal-
culated under kinematic conditions set I of the Bonn
experiment [11].
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Figure 2: The same as in Fig.1 but under kinematic
conditions set II of the Bonn experiment [11].
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Figure 3: Cross section (2.1) depending
√

s calcu-
lated under kinematic conditions set III of the Bonn
experiment [12].
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Figure 4: The same as in Fig.1 but under kinematic
conditions set IV of the Bonn experiment [12].
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Figure 5: Cross section (2.1) depending on
√

s
calculated under kinematic conditions set V of the
Bonn experiment [12].
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