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Time-like and space-like EMFFs, a global description Simone Pacetti

1. Introduction

Nucleon electromagnetic form factors (EMFFs) describe modications of the pointlike photon-
nucleon vertex due to the structure of nucleons. The virtual photon, which mediates, in Born
approximation, the electron-nucleon elastic scattering, interacting with single elementary charges,
the quarks, is a powerful probe for the internal structure of the hadrons. Moreover, as the elec-
tromagnetic interaction is precisely calculable in QED, the dynamical content of each vertex can
be extracted by comparing the data with the expectation, obtained under the pointlike hypothesis.
The study of EMFFs is an essential step towards a deep understanding of the low-energy QCD
dynamics. Nevertheless, even in case of nucleons, the available data are still incomplete.

2. Nucleon electromagnetic form factors

The elastic scattering of an electron by a nucleon, e−N → e−N, is represented, in Born approx-
imation, by the Feynman diagram of fig. 1 in the vertical direction. The 4-momentum, q, of the
virtual photon is space-like, indeed, following the labelling of the figure and being θ the scattering
angle, q2 =−2k0

1k0
2(1− cosθ)≤ 0.

e−(k1)

e−(k2)

N(p1)

N(p2)

γ(q)

Annihilation

S
c
a
tt

e
ri

n
g

Figure 1: One-photon exchange Feynman diagram for scattering e−N → e−N and annihilation e+e− →NN.

By using the crossing symmetry, the annihilation e+e− → NN is represented by the same Feynman
diagram, see fig. 1, but in the horizontal direction. In this case the photon 4-momentum is time-like,
in fact: q2 = 4k0

1k0
2 = (2k0)2 ≥ 0, with k0

1 = k0
2 ≡ k0.

The non-pointlike nucleon vertex, represented by the gray circle in fig. 1, is described by a non-
constant matrix Γµ , which, by requiring Lorentz and gauge invariance, can be written in terms of
two Lorentz scalar functions of the squared photon 4-momentum, FN

1 (q2) and FN
2 (q2), called Dirac

and Pauli EMFFs, as [1]

Γµ = γµFN
1 (q2)+

iσ µνqν

2MN
FN

2 (q2) , (2.1)

where MN is the nucleon mass (N = n, p). These EMFFs are connected to the non-helicity-flip and
the helicity-flip part of the hadronic current and are normalized, at q2 = 0, to the total charge, QN

(in units of the positron charge), and the anomalous magnetic moment, κN (in units of the Bohr
magneton), of the nucleon

FN
1 (0) = QN , FN

2 (0) = κN .
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Time-like and space-like EMFFs, a global description Simone Pacetti

The choice of a form factor pair to describe the two scalar degrees of freedom, allowed by Lorentz
and gauge invariance, in the definition of the spin-1/2 electromagnetic current, is not unique. Be-
sides the Dirac and Pauli EMFFs, we may use the so-called Sachs electric and magnetic form
factors [2] (FFs)

GN
E (q

2) = FN
1 (q2)+

q2

4M2
N

FN
2 (q2) , GN

M(q2) = FN
1 (q2)+FN

2 (q2) . (2.2)

In the Breit frame (no energy exchanged, q = (0, q⃗)) they correspond to the Fourier transformations
of the charge and magnetic moment spatial distributions of the nucleon, the normalizations are

GN
E (0) = QN , GN

M(0) = µN ,

where µN = QN +κN is the nucleon magnetic moment (in units of the Bohr magneton).
As a consequence of microcausality, EMFFs are analytic functions of q2, defined in the whole q2

complex plane, with a cut, over the positive real axis, from the theoretical threshold sth = (2Mπ)
2,

where Mπ is the pion mass, up to infinity, see fig. 2.

Re(q2)

Im(q2)

sth = (2Mπ)
2 sphy = (2MN)2

Data region

e+e−↔NN
Unphysical region

Space-like region
EMMFs are real

Time-like region
EMMFs are
complex

e−N → e−N
Data region

e+e−↔NN

Figure 2: The q2 complex plane. Cuts on the real axis and, experimentally accessible and forbidden regions
are shown.

Following the optical theorem, the cut is the superposition of infinite discontinuities, three of them
are sketched in fig. 2, corresponding to the opening of channels for every allowed intermediate state
which couples with the virtual photon and the NN final state. The physical EMFFs are the limit
over the upper edge of the real axis, red line in fig. 2, of such analytic functions and hence, below
sth, they are real, while, above that threshold, the EMFFs are complex.
The data in the two q2 regions are extracted using observables from different processes. In reference
to the sketch of fig. 2, we have that:

• the space-like values of EMFFs are obtained from the elastic scattering differential cross
section and polarization observables (see e.g. Ref. [3]);

• in the time-like region, above the so-called physical threshold sphy = (2MN)
2, see fig. 2, the

moduli of EMFFs are extracted by studying the angular distribution of the annihilation cross
sections σ(NN → e+e−) and σ(NN → e+e−);

3
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• the remaining part of the time-like region, namely that for: 0 ≤ q2 ≤ sphy, is called "unphys-
ical region" because, even though the EMFFs are still well defined in such a region, they are
not experimentally accessible.

The asymptotic behavior of the EMFFs in the space-like region is a q2 power law that can be
predicted in the framework of perturbative QCD (pQCD) either in terms of dimensional consider-
ations [4], or in terms of minimal gluon exchange, among the constituent quarks, needed to share
the photon transfer momentum [5].
More in detail, ignoring for the moment the logarithmic corrections of the strong coupling constant,
as q2 →−∞, we have{

FN
1 (q2)∼ (−q2)−2

FN
2 (q2)∼ (−q2)−3 ⇒

{
GN

E (q
2)∼ (−q2)−2

GN
M(q2)∼ (−q2)−2 .

The Pauli EMFF FN
2 (q2), ruling the spin-flip part of the nucleon electromagnetic current, experi-

ences a further suppression with respect to FN
1 (q2). The Sachs electric and magnetic form factors,

instead, scale with same power law as q2 →−∞.
The asymptotic behavior in the time-like region, when q2 → ∞, can be inferred by the space-like
power law, using the Phragmèn-Lindelöf theorem [6]. Indeed, since the EMFFs are analytic and
bounded functions of q2 over the upper-half complex plane, they have the same asymptotic behav-
ior over the arc of radius |q2| and subtended angle of π radians, that sweeps the upper-half plane.
Therefore the time-like asymptotic behavior, which is attained when |q2| diverges and arg(q2) = 0,
follows the same power law obtained from pQCD and counting rule in the space-like region, i.e.
for arg(q2) = π . In particular, for the Sachs EMFFs, we have [7]

lim
q2→−∞

GN
E,M(q2) = lim

q2→+∞
GN

E,M(q2) .

3. The model

The model [8] that we use to parametrize the nucleon EMFFs is based on a primal idea due to
Iachello, Jackson and Landé [9], then developed by Gari and Krümpelmann [10], and Lomon [11].
The two main ingredients of this model are: the vector-meson-dominance (VMD), for the low-|q2|
regions (see, e.g., Ref. [12] for a review on VMD models), and the pQCD for the high-|q2| and
asymptotic behavior. In the framework of VMD the coupling of the virtual photon with the nu-
cleon vertex is mediated by vector mesons, hence the EMFFs are parametrized as a combination
of vector meson propagators. As the momentum transfer increases, the propagator-like behavior
is replaced by the power-law scaling predicted by pQCD. The transition between these different
regimes is driven by the so-called hadron/quark FFs, acting at the vector meson-nucleon vertices.
In order to have a simpler description in terms of vector-meson contributions, we consider the
isospin components of the nucleon EMFFs. The Lomon model includes, besides the lightest vector
mesons, excited states as well. So, the isovector (isospin = 1) component has the ρ and ρ(1450),
called simply ρ ′, contribution, while the isoscalar (isospin = 0) component has the three contribu-
tions from: ω and ω(1420), called ω ′, and ϕ .

4
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In detail, for the isospin components of the Dirac and Pauli nucleon EMFFs, we have the following
expressions

F iv
1 (q2) =

[
BWρ(q2)+BWρ ′(q2)

]
Fρ

1 (q2)+
[
1−BWρ(0)−BWρ ′(0)

]
FD

1 (q2) ;

F iv
2 (q2) =

[
κρBWρ(q2)+κρ ′BWρ ′(q2)

]
Fρ

2 (q2)+
[
κiv −κρBWρ(0)−κρ ′BWρ ′(0)

]
FD

2 (q2) ;

F is
1 (q2) =

[
BWω(q2)+BWω ′(q2)

]
Fω

1 (q2)+BWϕ (q2)Fϕ
1 (q2)

+[1−BWω(0)−BWω ′(0)]FD
1 (q2) ; (3.1)

F is
2 (q2) =

[
κωBWω(q2)+κω ′BWω ′(q2)

]
Fω

2 (q2)+κϕ BWϕ (q2)Fϕ
2 (q2)

+[κis −κωBWω(0)−κω ′BWω ′(0)]FD
2 (q2) ,

where:

• the vector-meson propagators are written as Breit-Wigner (BW) formulae, in pole approx-
imation, in case of narrow resonances and with energy-dependent widths, in case of broad
resonances

BWα(q2) =


gαM2

α
fα

1
M2

α −q2 α = ω,ϕ

gαM2
α

fα
B̃W

(1,s)
α (q2) α = ρ ,ρ ′,ω ′

,

Mα is the mass and M2
αgα/ fα the coupling constant to the virtual photon and the nucleons

of the vector meson α . The three broad resonances ρ , ρ ′ and ω ′ are described with an
improved BW formula that has: energy-dependent width and the analytic properties required
by microcausality and unitarity. We considered two possible descriptions, labelled with "1"
or "s", the case "1" is that with a minimal alteration from the non-relativistic BW form and
the case "s" from relativistic perturbation theory. We will discuss in more detail these analytic
BW formulae in the next section;

• the functions Fα
1,2(q

2), are meson-nucleon FFs which describe the vertices αNN, where the
vector meson α couples with the nucleons. We have the same expression for all the vector
mesons of ρ and ω family, which is:

Fα
i (q2) = fi(q2)≡ Λ2

1

Λ2
1 − q̃2

(
Λ2

2

Λ2
2 − q̃2

)i

,
i = 1,2 ,
α = ρ ,ρ ′,ω,ω ′ ,

(3.2)

while, in the case of the ϕ meson we consider an extra factor to force the Zweig suppression
at low q2 for the Dirac EMFF, so we have

Fϕ
1 (q2) = f1(q2)

(
q̃2

q̃2 −Λ2
1

)3/2

, Fϕ
2 (q2) = f2(q2)

(
Λ2

1

µ2
ϕ

q̃2 −µ2
ϕ

q̃2 −Λ2
1

)3/2

. (3.3)

The free parameters Λ1 and Λ2 represent cut-offs for the general high-energy behavior and
the helicity-flip respectively. Finally, q̃2 is the transfer momentum squared which includes
the QCD logarithmic corrections and it is defined as

q̃2 = q2 ln
[
(Λ2

D −q2)/Λ2
QCD

]
ln
(
Λ2

D/Λ2
QCD

) , (3.4)

5
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where ΛQCD is the QCD scale and ΛD is a free parameter representing a cut-off which con-
trols the asymptotic behavior of the quark-nucleon vertex;

• the non-resonant part of the amplitude, which accounts for the direct coupling of the virtual
photon to the valence quarks of the nucleons and hence it is responsible for the asymptotic
behavior, is described by the functions

FD
i (q2) =

Λ2
D

Λ2
D − q̃2

(
Λ2

2

Λ2
2 − q̃2

)i

, i = 1,2 , (3.5)

ΛD and Λ2, are the same parameters appearing in the meson nucleon FFs definition, and
represent the scales of the asymptotia and of the helicity conservation, respectively, and q̃2 is
the QCD-corrected momentum transfer squared, defined in eq. (3.4);

• finally, κα is the ratio of tensor to vector coupling at q2 = 0 in the αNN matrix element,
while

κs = κp +κn , κv = κp −κn .

are the isospin anomalous magnetic moments. The space-like asymptotic behavior (q2 →
−∞) for the Dirac and Pauli EMFFs is driven by the FD

1,2(q
2) contribution, given in eq. (3.5).

In particular we get

F iv,is
1 (q2) ∼

q2→−∞

1[
q2 ln

(
−q2/Λ2

QCD

)]2 , F iv,is
2 (q2) ∼

q2→−∞

F iv,is
1 (q2)

−q2 ln
(
−q2/Λ2

QCD

) ,
as required by the pQCD [4, 5].

This analytic version of the Lomon-Gari-Krümpelmann (LGK) model can be naturally extended to
the time-like region, for positive q2, and so it is able to describe not only scattering data but also
data on cross sections for the annihilation processes: e+e− ↔ NN.
In fact, the BW formulae with energy-dependent widths are analytic in the whole q2 complex plane
with the cut (sth = (2Mπ)

2,∞), and the hadronic FFs of eqs. (3.2) and (3.5), depending on q̃2, for
reasonable values of the cut-offs, have cuts but no poles on the physical Riemann sheet. Moreover,
since the effect of the small widths of the narrow resonances ω and ϕ is negligible, we use for their
propagators the non-relativistic expression.

4. Analyticity of Breit-Wigner formulae

The standard relativistic BW formula for an unstable particle of mass M and constant width Γ
is the simple pole in s ≡ q2 = M2 − iΓM, i.e.:

BW (s) =
1

M2 − s− iΓM
.

If we consider an energy dependent width, immediately we face problems concerning the analyt-
icity. In the case of ρ meson, for instance, a realistic way to define an expression for the energy

6
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dependent width is to write down its decay rate to π+π−, assumed to be the dominant decay chan-
nel, as a function the ρ mass squared, s = M2

ρ ,

Γρ
s (s) = Γρ

0

M2
ρ

s

(
s− sth

M2
ρ − sth

) 3
2

, (4.1)

where: the subscript “s” indicates the factor 1/s appearing in the width definition, Γρ
0 is the total

width of the ρ , Mρ and Mπ are the ρ and pion mass respectively, and sth = (2Mπ)
2.

It follows that the BW formula becomes

BWs(s) =
s

s(M2
ρ − s)− iΓρ

0 M3
ρ

(
s−sth

M2
ρ−sth

) 3
2
. (4.2)

In this form the BW has the “required” [13] discontinuity cut (sth,∞) and maintains a complex
pole close to the non-relativistic one. Moreover, these are not the only complications introduced
by using Γρ(s) instead of Γρ

0 , the power 3/2 in the denominator and the factor 1/s, see eq. (4.2),
generate also additional poles in the physical Riemann sheet which, to preserve analyticity, must
be subtracted.

4.1 Regularization of Breit-Wigner formulae

We consider the general case of a BW formula which has N poles, {p j}, lying in the physical
Riemann sheet. We define a regularization procedure which consists in subtracting these poles.
In other words we add counterparts that at s = p j behave as the opposite of the jth pole. In more
detail, we may define a regularized BW as

B̃W (s) = BW (s)−
N

∑
j=1

R j

s− z j
, (4.3)

where R j is the residue of the BW with respect to the jth pole.
The same result can achieved by using the dispersion relations (DR) for the imaginary part. If the
function BW (s) is analytic in the s-complex plane, except for a discontinuity cut (sth,∞) and a finite
number of isolated poles {p j}N

j=1, then the BW can written through the integral representation

BW (s) =
1
π

∫ ∞

sth

Im[BW (s′)]
s′− s

ds′+2iπ
N

∑
j=1

Res [BW (s′), p j]

s− p j
.

It follows that the integral, in the left-hand side, coincides with the regularized BW defined in
eq. (4.3). Using the DR procedure we may regularize a BW formula without knowing its poles.
We only need the imaginary part of the function BW (s) that can be computed directly from the
non-regularized expression. Once the imaginary part is known, the regularized expression is

B̃W (s) =
1
π

∫ ∞

sth

Im[BW (s′)]
s′− s

ds′ .

7
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4.2 Two cases for Γ(s)

We consider explicitly two expressions for Γ(s), assuming only one main decay channel.
Besides the form we discussed in Sec. 4, eq. (4.1), identified by the subscript "s", which was

Γs(s) = Γ0
M2

s

(
s− s̃th

M2 − s̃th

) 3
2

,

we consider also a simpler expression, closer to the non-relativistic form,

Γ1(s) = Γ0

(
s− s̃th

M2 − s̃th

) 3
2

, (4.4)

where s̃th is the threshold in each specific case. The subscript "1" in the expression of eq. (4.4),
indicates that there is no extra factor 1/s in the definition of the energy-dependent width.
As already discussed, the analyticity domain of the BW formulae is modified by the energy-
dependent widths and, in particular, unwanted poles are introduced. To recover the regularity
required by the theory, such poles must be subtracted. More in detail, in both cases with energy-
dependent width Γ1(s) or Γs(s), the BW formula acquires one real pole. We call these poles: ss

and s1 respectively (both of them are real and less than s̃th). The corresponding residues, Rs,1, are

Rs =
ss

M2 −2ss +
3
2 Γ0M3

√
s̃th−ss

(M2−s̃th)3/2

, R1 =
1

−1+ 3
2 Γ0M

√
s̃th−s1

(M2−s̃th)3/2

. (4.5)

Following eq. (4.3), the regularized BW formulae read

B̃W s,1(s) = BWs,1(s)−
Rs,1

s− ss,1
.

In particular, below the threshold s̃th the BW formulae are real and we have

B̃W s(s < s̃th) =
s

s(M2 − s)−Γ0M3
(

s̃th−s
M2−s̃th

)3/2 −
Rs

s− ss
,

B̃W 1(s < s̃th) =
1

M2 − s−Γ0M
(

s̃th−s
M2−s̃th

)3/2 −
R1

s− s1
.

(4.6)

Above s̃th the BW formulae become complex, real and imaginary parts are obtained as limit of
B̃W s,1(s) over the upper edge of the cut (s̃th,∞), the subtraction of the real poles ss,1 affects only
the real parts, so we have

B̃W s(s > s̃th) =
s2(M2 − s)

s2(M2 − s)2 +Γ2
0M6

(
s−s̃th

M2−s̃th

)3 −
Rs

s− ss
+ i

Γ0M
(

s−s̃th
M2−s̃th

)3/2

(M2 − s)2 +Γ2
0M2

(
s−s̃th

M2−s̃th

)3 ,

B̃W 1(s > s̃th) =
M2 − s

(M2 − s)2 +Γ2
0M2

(
s−s̃th

M2−s̃th

)3 −
R1

s− s1
+ i

Γ0M
(

s−s̃th
M2−s̃th

)3/2

(M2 − s)2 +Γ2
0M2

(
s−s̃th

M2−s̃th

)3 .

(4.7)

The parameters of the subtracted poles for the three broader vector mesons: ρ , ρ ′ and ω ′ [14], are
reported in table 1.

8
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Resonance M (GeV) Γ0 (GeV) s̃th ss (GeV2) s1 (GeV2)

ρ(770) 0.7755 0.1491 (2Mπ)
2 0.005953 -11.63

ρ(1450) 1.465 0.400 (2Mπ)
2 0.003969 -29.43

ω(1420) 1.425 0.215 (Mπ +Mρ)
2 0.06239 -19.46

Table 1: Parameters for the BW formulae of resonances: ρ , ρ ′ and ω ′.

5. The analytic extension

The original LGK model, constructed in the space-like region, can be analytically continued
in the time-like region using the regularized BW formulae obtained in Sec. 4. We consider then
a new set of expressions for F iv

1,2(q
2) and F is

1,2(q
2), homologous to those of eq. (3.1) where now

we use, for the broader vector mesons, regularized BW formulae. Such BWs have the expected
analytic structure and reproduce in both space-like and time-like regions the finite-width effect of
broad resonances. These are the new expressions for the isospin components of nucleon EMFFs

F iv
1,case(q

2) =
[
B̃W

ρ
case(q

2)+ B̃W
ρ ′

case(q
2)
]
Fρ

1 (q2)+
[
1− B̃W

ρ
case(0)− B̃W

ρ ′

case(0)
]
FD

1 (q2)

F iv
2,case(q

2) =
[
κρ B̃W

ρ
case(q

2)+κρ ′ B̃W
ρ ′

case(q
2)
]
Fρ

2 (q2)

+
[
κv −κρ B̃W

ρ
case(0)−κρ ′ B̃W

ρ ′

case(0)
]
FD

2 (q2)

F is
1,case(q

2) =
[
BW ω(q2)+ B̃W

ω ′

case(q
2)
]
Fω

1 (q2)+BW ϕ (q2)Fϕ
1 (q2)+[

1−BW ω(0)− B̃W
ω ′

case(0)
]
FD

1 (q2)

F is
2,case(q

2) =
[
κω BW ω(q2)+κω ′ B̃W

ω ′

case(q
2)
]
Fω

2 (q2)+κϕ BW ϕ (q2)Fϕ
2 (q2)+[

κs −κω BW ω(0)−κω ′ B̃W
ω ′

case(0)−κϕ BW ϕ (0)
]
FD

2 (q2) ,

where case = s and case = 1 correspond to the parametrizations of the energy dependent width
described in Sec. 4.2. Following eqs. (4.6) and (4.7) for the definition of B̃W (q2), and including
the coupling constants, we have

B̃W
β
case(q

2) =



gβ M2
β

fβ

 q2

q2(M2
β −q2)− iΓβ

0 M3
β

(
q2−s̃β

th

M2
β−s̃β

th

)3/2 −
Rβ

s

q2 − sβ
s

 case = s

gβ M2
β

fβ

 1

M2
β −q2 − iΓβ

0 Mβ

(
q2−s̃β

th

M2
β−s̃β

th

)3/2 −
Rβ

1

q2 − sβ
1

 case = 1

,

with: β = ρ , ρ ′, ω ′ (parameters in table 1) and the residues Rβ
s,1 are given in eq. (4.5).

The regularized BW formulae have the same high-energy behavior of the non-relativistic ones. In
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fact, as |q2| → ∞, the function B̃W
β
case(q

2) vanishes like 1/q2, more in detail we have

B̃W
β
case(q

2) ∼
|q2|→∞


gβ M2

β

fβ

1−Rβ
s

q2 case = s

−
gβ M2

β

fβ

Rβ
1

q2 case = 1
.

It is interesting to notice that in both cases the expected behavior is ensured by the subtracted pole,

in particular, the asymptotic limit of q2 · B̃W
β
case(q

2) is proportional to (1−Rβ
s ) and Rβ

1 , respectively.

6. Results

We have considered nine sets of data, six of them lie in the space-like region [15] and three in
the time-like region [16–24]. The data are on the Sachs EMFFs and their ratios. The global χ2 is
the sum of nine contributions, χ2

i , one for each set

χ2 =
9

∑
i=1

τi ·χ2
i , with: χ2

i =
Ni

∑
k=1

(
Qi(q2

k)− vi
k

δvi
k

)2

,

where the coefficients τi weight the ith contribution, we use τi = 1 or τi = 0 to include or exclude
the ith data set, Qi(q2) stands for the physical observable, function of q2, and the set {q2

k ,v
i
k,δvi

k;Ni}
represents the corresponding data; vi

k is the kth value (k = 1, . . . ,Ni) of the quantity Qi (i = 1, . . . ,9)
measured at q2 = q2

k , with error δvi
k.

Qi Ni
minimum χ2

i
case = s

With BABAR

case = 1
With BABAR

case = s
No BABAR

case = 1
No BABAR

sp
ac

e-
lik

e

Gp
M 68 48.7 50.1 54.6 60.8

Gp
E 36 30.4 27.6 26.2 35.0

Gn
M 65 154.6 154.2 158.2 167.0

Gn
E 14 22.7 23.2 24.1 26.0

µpGp
E/Gp

M 25 13.9 12.9 10.6 14.4

µnGn
E/Gn

M 13 11.3 10.7 8.2 8.9

tim
e-

lik
e |Gp

eff| 61(28) 162.5 166.7 62.2 35.0

|Gn
eff| 5 8.4 6.3 3.2 0.3

Total 285(252) 452.5 451.7 347.3 347.4

Normalized χ2 1.66 1.66 1.45 1.45

Table 2: Measured quantities, numbers of data points and χ2 contributions. The values in parentheses
indicate the number of data points in the case “No BABAR”, see the text.

We have considered four cases corresponding to the two different possible parametrizations for the

10
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BW formulae, the so-called case = 1 and case = s, and two possible sets of time-like data, including
and not including the BABAR data [24]. The possibility of excluding the BABAR data has been taken
into account because those data are the only obtained using the initial state radiation technique, that
is, they have been extracted from the cross section of the radiative process e+e− → ppγ , where the
photon is emitted by one of the initial lepton. The theoretical error in using this technique could be
underestimated although relevant calculations have been made [25].
The complete list of observables is reported in table 2, the number of data points and the corre-
sponding minimum χ2 are also shown.
Data and fits, black and gray curves correspond to case = 1 and case = s respectively, solid and
dashed line to the cases with and without BABAR data respectively, are shown in figs. 4-11. In the
space-like region the electric Sachs EMFFs are normalized to the dipole

GD(q2) =
[
1−q2/(0.71GeV2)

]−2
,

while magnetic EMFFs are also normalized to the magnetic moments. The dipole normalization
decreases the range of variation and allows a quick estimate of the deviations from the dipole form
itself. The quantity RN is the ratio defined as: RN = GN

E/GN
M , for the nucleon N, that stands for both

neutron and proton, hence there are six space-like observables.
The time-like effective FF, |GN

eff|, is defined in terms of the total cross section, σ(e+e− → NN), as

|GN
eff(q

2)|=

 σ(e+e− → NN)

4πα2

3q2

√
1− 4M2

N
q2

(
1+ 2M2

N
q2

)


1/2

, (6.1)

where the kinematic factor at denominator is the Born cross section for a pointlike nucleon. The
same quantity can be expressed through the EMFFs, GN

E and GN
M , i.e., considering the matrix ele-

ment given in eq. (2.1) and the definitions of eq. (2.2), we have

|GN
eff(q

2)|=
(∣∣GN

M(q2)
∣∣2 + 2M2

N

q2

∣∣GN
E (q

2)
∣∣2)1/2(

1+
2M2

N

q2

)−1/2

.

This is the relation that we use to fit the data on |GN
eff| for both proton-antiproton and neutron-

antineutron production.
As a consequence of near-threshold flat cross sections, the effective nucleon FFs, extracted by the
total cross section data through the relation of eq. (6.1), see data in figs. 9 and 10, have a steep
enhancement when q2 → (2MN)

2. Such a steep growth is in contrast with theory that predicts
smooth behavior of nucleon EMFFs across the physical threshold, where, moreover, the formula
of eq. (6.1) should be corrected to account for NN final state interaction. In particular, in case
of pp we have to consider, not only the Coulomb correction, due to the electromagnetic attractive
interaction [26], but also the effect of strong interaction [27] and the interplay between them, whose
form is not well known. For that reason we included in the present analysis only time-like data with:
q2 ≥ 4 GeV2.
The free parameters of this model are:

• three cut-offs: Λ1, Λ2 and ΛD which parametrize the hadronic FFs and control the transition
from non-perturbative to perturbative QCD regime;

11
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• five pairs of vector meson anomalous magnetic moments and photon couplings (κα ,gα/ fα),
with α = ρ , ρ ′, ω , ω ′, and ϕ .

The values for these 13 free parameters together with the fixed parameters are reported in table 3.
The fixed parameters describe dynamical quantities and well known properties of the intermediate
vector mesons. For the QCD scale, we use the value ΛQCD = 0.15 GeV in all cases but for the
case = 1, without BABAR data, where instead: ΛQCD = 0.10 GeV. Such a reduced value is motivated
by the analyticity requirement of having no real poles in meson-nucleon and quark-nucleon FFs
(Sec. 3). As ΛQCD = 0.15GeV is closer to the values preferred by high energy experiments, it
suggests that case = s is the more physical model. Another reason to prefer it on physical grounds is
that the width formula of the vector meson decay is determined by relativistic perturbation theory.
Case = 1 was chosen because it is a simpler relativistic modification of the non-relativistic BW
formula.

Parameter
case = s

With BABAR

case = 1
With BABAR

case = s
No BABAR

case = 1
No BABAR

gρ/ fρ 2.766 2.410 0.9029 0.4181
κρ -1.194 -1.084 0.8267 0.6885

Mρ (GeV) 0.7755 (fixed)
Γρ (GeV) 0.1491 (fixed)

gω/ fω -1.057 -1.043 -0.2308 -0.4894
κω -3.240 -3.317 -9.859 -1.398

Mω (GeV) 0.78263 (fixed)

gϕ/ fϕ 0.1871 0.1445 0.0131 0.1156
κϕ -2.004 -3.045 37.218 -0.2613

Mϕ (GeV) 1.019 (fixed)
µϕ (GeV) 20.0 (fixed)

gω ′/ fω ′ 2.015 1.974 1.265 1.649
κω ′ -2.053 -2.010 -2.044 -0.6712

Mω ′ (GeV) 1.425 (fixed)
Γω ′(GeV ) 0.215 (fixed)

gρ ′/ fρ ′ -3.475 -3.274 -0.8730 -0.0369
κρ ′ -1.657 -1.724 -2.832 -104.35

Mρ ′ (GeV) 1.465 (fixed)
Γρ ′ (GeV) 0.400 (fixed)

Λ1 (GeV) 0.4801 0.5000 0.6474 0.6446
Λ2 (GeV) 3.0536 3.0562 3.0872 3.6719
ΛD (GeV) 0.7263 0.7416 0.8573 0.8967

ΛQCD (GeV) 0.150 0.100

Table 3: Best values of fit parameters and constants.
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Figure 3: Space-like magnetic proton EMFF nor-
malized to the dipole and µp, in case = 1 and
case = s, including and not the BABAR data.
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Figure 4: Space-like electric proton EMFF normal-
ized to the dipole, in case = 1 and case = s, including
and not the BABAR data.
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Figure 5: Space-like magnetic neutron EMFF
normalized to the dipole and µn, in case = 1 and
case = s, including and not the BABAR data.
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Figure 6: Space-like electric neutron EMFF nor-
malized to the dipole, in case = 1 and case = s, in-
cluding and not the BABAR data.

The charge proton root mean square radii obtained in the four considered cases are

rp =
√

⟨r2
p⟩=

[
1
6

dGp
E(q

2)

dq2

]1/2

q2=0
=


0.876fm case = s with BABAR

0.863fm case = 1 with BABAR

0.834fm case = s no BABAR

0.819fm case = 1 no BABAR

,
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Figure 7: Space-like ratio Rp = µp Gp
E/Gp

M nor-
malized to µp, in case = 1 and case = s, including
and not the BABAR data.
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Figure 8: Space-like ratio Rn = µn Gn
E/Gn

M normal-
ized to µn, in case = 1 and case = s, including and
not the BABAR data.
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Figure 9: Time-like effective proton FF data (nine
sets [16–24]) and fit, in case = 1 and case = s, in-
cluding and not the BABAR data.
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Figure 10: Time-like effective neutron FF data
(only FENICE [16]) and fit, in case = 1 and case = s,
including and not the BABAR data.

to be compared with the Particle Data Group (PDG) value [14]

rPDG
p = 0.877±0.005fm .
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Figure 11: Modulus of the ratio Gp
E/Gp

M , data [24]
and prediction, in the time-like region, in case = 1
and case = s, including and not the BABAR data.

-1

0

1

2

3

10

q2 (GeV2)

A
rg

(G
Ep /G

Mp
) 

(r
ad

)

Case = s with

Case = 1 with

Case = s no

Case = 1 no

BABAR

BABAR

BABAR

BABAR

Figure 12: Prediction for the phase of the ratio
Gp

E/Gp
M , in the time-like region, in case = 1 and

case = s, including and not the BABAR data.

In the case of the neutron, the mean square radii are

⟨r2
n⟩=

1
6

dGn
E(q

2)

dq2

∣∣∣∣
q2=0

=


−0.117fm2 case = s with BABAR

−0.117fm2 case = 1 with BABAR

−0.112fm2 case = s no BABAR

−0.112fm2 case = 1 no BABAR

,

and the PDG value is [14]

⟨r2
n⟩PDG =−0.1161±0.0022fm2 .

7. Discussion

The LGK model [28] was conceived to describe EMFFs in the space-like region. To extend
this model also in the time-like region, we have revised the definition of the vector meson propaga-
tors, we have included energy-dependent widths and then regularized the obtained expressions to
eliminate unwanted poles.
Two possible forms of energy-dependent widths have been discussed: case = 1, the minimal al-
teration from the non-relativistic BW formula, and case = s derived from relativistic perturbation
theory. The resulting modification in the space-like region, due to the more complex analytic struc-
ture of propagators, is minor and affected the fit there very little.
Figures 3-10 and table 3 show the results of the global, space-like and time-like, fit to the EMFFs
of the nucleons, the outcome is satisfactory, even in light of a so etherogenous set of data.
The χ2 contributions from each space-like EMFF differ little between case = 1 and case = s, see
also the normalized contributions, χ2

i /Ni, reported in figs. 3-10, and are approximately the same as
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in the space-like only fit of Ref. [15].
In the time-like region, the quality of the fit to the effective proton and neutron FFs is poorer when
the BABAR data [24] are included than when that set of data is omitted.
Figure 7, for the ratio Rp, indicates how new data at higher momentum-transfers could discriminate
among the different cases.
Figure 10, for the neutron effective FF, is also extended in energy for the same reason. It clearly
shows that at higher energy case = 1 no BABAR could be discriminated from the other three fits by
moderately precise data.
Figure 11 shows the modulus of the time-like ratio Gp

E/Gp
M . Even though there are two sets of data

on this quantity, one of them [24] is shown in the figure, we decided to not include these data in the
fit, hence the curves are predictions. Finally, in fig. 12, is represented the relative phase between the
electric and magnetic proton FFs, Gp

E and Gp
M , in the time-like region. There are no data on such an

observable. So, also in this case, the curves represent predictions of the model. It is interesting to
notice that these time-like observables, as a consequence of the complex structure of the EMFFs,
are even more sensitive of the space-like ones, to the different cases.
Precise data on these time-like observables will be effective in disentangle and selecting models.
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