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1. Preamble

A field-theoretic approach based on the method of unitary clothing transformations (UCTs)
exposed in refs. [1], [2], [3] and [4] is applied in the theory of electromagnetic interactions (EM)
with nuclei. In this context, we will show the clothed particle representation (CPR) not only of
the original field Hamiltonian and other generators of the Poincaré group but the current density
operator too. In accordance with the gauge invariance principle (GIP) (see, e.g., [1], [5]) the latter
must meet the continuity equation (CE) that allows one to derive important results (in particular,
the so-called low-energy theorems) for the EM transitions. One of them will be employed below
when finding links between the quantum-mechanical definitions of the static EM moments of nu-
clei (bound systems) and properties of the photonuclear reaction amplitudes at small momentum
transfers. An explicitly gauge independent (GI) form [6], [7] of the EM transition amplitudes for
single-photon absorption or emission on a nucleus makes possible to get new prescriptions when
evaluating its Cartesian moments.
As an illustration, we consider the e− d scattering to see how the notion of clothed particles can
be incorporated into the theory of EM processes on nuclei. To be constructive our calculations
of the simplest deuteron moments are carried out with the deuteron state (the bound state of the
clothed neutron and proton) that is an eigenvector of the corresponding Hamiltonian in the CPR,
whose interaction part has been built up in [8] starting from a conventional model (see, e.g., [9])
for interacting π-, ρ-, ω-, σ - and N(N̄)-fields. Therefore, the n− p interaction operator consists
of separable contributions due to exchanges of the clothed mesons between the clothed nucleons.
Following [8], in order to avoid ultraviolet divergences typical of local field theories we prefer to
handle the regularized contributions to the interaction Hamiltonian density by introducing some
covariant cutoff functions in momentum space. Our consideration is compatible with relativistic
invariance requirements being fulfilled in the framework of an original procedure in [10] to meet
the Poincaré-Lie algebra.
Further, in spite of the primary field model used has the same departure point as that by the Bonn
group [9] there are appreciable distinctions between the UCT and Bonn potentials that ensure a
fair treatment of such on–energy–shell quantities as the phase shifts of the n− p scattering (cf. the
dotted and solid curves in Figs.7 and 8 in [8]). These distinctions become especially prominent in
case of the 3S1 −3 D1 potentials responsible for the formation of the tensor part of nuclear forces.
One more motivation of our current explorations is search for quantities essentially dependent on
their properties and the first candidate to this direction may be the S- and D-components of the
deuteron wave function (WF). In this connection, of great interest are the electric quadrupole and
magnetic dipole moments of deuterons. The topic has an eventful history. But here let us remind
of the relativistic calculations within: the light-front dynamics [11] and [12], the Bethe-Salpeter
formalism [13] and [14], the inclusion of meson exchange currents (MEC) and boost contributions
of leading order [15] and [16] and refs. therein.
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2. Electromagnetic Static Moments of Bound Systems

Starting from the operator

µ⃗ =
1
2

∫
d⃗x x⃗× J⃗(⃗x) (2.1)

of the magnetic dipole moment for a system with the current density J⃗(⃗x) (reminescent of the Biot-
Savart formula from the classical magnetostatics) one can show after [17] that its matrix elements
between narrow wave packets are expressed through the limit

lim
q⃗→0

[
− i

2
curl⃗q⟨

q⃗
2
|J⃗(0)|− q⃗

2
⟩
]
, (2.2)

where the matrix elements ⟨⃗q/2|J⃗(0)| − q⃗/2⟩ 1 determine the corresponding current in the Breit
frame. The magnetic dipole moment of the system, being defined as the z-component of the vector
(2.1) for the stretched configuration with MJ = J, in case of the deuteron

µd = lim
q⃗→0

[
− i

2
curl⃗q⟨

q⃗
2

;1|J⃗(0)|− q⃗
2

;1⟩
]z

. (2.3)

In parallel, considering the interaction energy of the system, which has the charge density ρ (⃗x) =
J0(⃗x), in a static external electric field and expanding it in the Cartesian electric moments one
encounters the quadrupole moment tensor

Qi j =
∫

d⃗x [3xix j −δi j⃗x2]ρ (⃗x) (i, j = 1(x),2(y),3(z)). (2.4)

Then, repeating the same trick with the wave packets one gets the matrix elements

⟨JM′
J|Qi j|JMJ⟩=− lim

q⃗→0

[{
3

∂ 2

∂qi∂q j
−δi j

∂ 2

∂q2
l

}
⟨ q⃗
2
|ρ(0)|− q⃗

2
⟩
]
. (2.5)

to introduce the electric quadrupole moment Q= ⟨JJ|Q33|JJ⟩ (again, not necessarily for the deuteron).
At the point, let us a little deviation.

3. Two Forms of Electron-Deuteron Scattering Amplitude

To retain the GI treatment for inevitably approximate calculations of the amplitudes of one-
photon radiative processes we prefer to employ a generalization LevShe93 of the Siegert theorem
(cf., [18], [19]), in which the elastic e−d scattering amplitude can be represented in the explicitly
GI form:

T (ed → e′d′) =
[
ωε⃗(e′,e)− q⃗ε0(e′,e)

]
D⃗(⃗q)+

[⃗
q× ε⃗(e′,e)

]
M⃗(⃗q), (3.1)

with the generalized electric dipole moment

D⃗(⃗q) =−iω−1
1∫

0

dλ
λ

∇q⃗

{[√
λ 2⃗q2 +m2

d −md

]
⟨λ q⃗;M′|ρ(0)|⃗0;M⟩

}
(3.2)

1The total angular moment J, its projection MJ and other quantum numbers, if any, are implied
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and the generalized magnetic dipole moment

M⃗(⃗q) =−i
1∫

0

dλ∇q⃗ ×⟨λ q⃗;M′|J⃗(0)|⃗0;M⟩, (3.3)

Here we have introduced the notation εµ(e,e′) = ūe′(k′)γµue(k) omitting the electron polarization
labels. As usually, the Dirac spinor ue(k) (ue′(k′)) describes the incident (outgoing) electron with
the 4-momentum k (k′) and qµ = (ω, q⃗) = kµ −k′µ (q2

µ = ω2− q⃗2 < 0) is the 4-momentum transfer.
These equations have been derived using the property of translational invariance

Jµ (⃗x) = e−iP⃗⃗xJµ(0)eiP⃗⃗x (3.4)

and the Foldy representation [20] for

a⃗ei⃗b⃗c =
∫ 1

0
{∇c⃗

(⃗
a · c⃗eiλ b⃗⃗c

)
+ iλ c⃗× [⃗a× b⃗]eiλ b⃗⃗c}dλ (3.5)

with arbitrary vectors a⃗, b⃗ and c⃗ .
We consider eq. (3.1) as an alternative to other (perhaps, more popular) form

T (ed → e′d′) = εµ(e,e′)⟨P⃗;M′|Jµ(0)|⃗0;M⟩, (3.6)

where the deuteron current is expressed through the charge monopole (GC), magnetic dipole (GM)
and electric quadrupole (GQ) form factors (FFs) of the deuteron (see survey [21] and refs. therein),
e.g. in lab. system with the Z-axis directed along the momentum transfer q⃗,

⟨⃗q;M′|J0(0)|⃗0;M⟩= e(1+η)

{
GC(Q2)+2η

[
δM0 −

1
3

]
GQ(Q2)

}
δM′M (3.7)

⟨⃗q;M′|Jx(0)|⃗0;M⟩= e√
2

√
η(η +1)GM(Q2)

{
δM′,M+1 −δM′,M−1

}
(3.8)

with ratio η = Q2

4m2
d
> 0.

Static quantities such as the deuteron charge ed , moments µd and Qd are given by normalization
conditions

ed = eGC(0), µd = GM(0)
e

2md
, Qd = GQ(0)

e
m2

d
(3.9)

One should note that the parametrization of the deuteron current in terms of three (no more) co-
variant FFs becomes possible once the current, first, meets the GI condition

qµ ⟨⃗q;M′|Jµ(0)|⃗0;M⟩= 0 (3.10)

and, second, has the property

U(Λ)Jµ(0)U†(Λ) = Jν(0)Λ µ
ν (3.11)

to be the 4-vector. By definition, the correspondence Λ ⇒U(Λ) ∀Λ that belong to the full Lorentz
group (including the space inversion and time reversal) realizes its irreducible representation in the

4
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Hilbert space H .
Evidently, eq. (3.10) does not follow merely from the CE that is[

Pµ ,Jµ(0)
]
= 0, (3.12)

this e1-order consequence of the GIP whose historical roots go back to the never-to-be-forgotten
realm created by Fock and Weyl (details in [22]). Simultaneous ensuring of requirements (3.10)
and (3.12) is a nontrivial problem in practical calculations.
Thus, one has to handle the matrix elements of the Nöther operator Jµ(x) = (J0(x) ≡ ρ(x), J⃗(x))
at the space-time point x = (t, x⃗) = 0, sandwiched between the initial 0⃗;M⟩ (in the rest frame) and
final |P⃗ = q⃗;M′⟩ deuteron states, and we will show finding of them within the CPR.

4. Hamiltonian and Boost Generator for Meson-Nucleon System in CPR. Deuteron
Eigenvalue Equation

Recall that the CPR of the primary Hamiltonian H ≡ H(α) = HF(α)+HI(α) and other oper-
ators (for instance, in the case of interacting meson and nucleon fields) being expressed through the
set α of bare-particles creation/annihilation operators is constructed via the UCT W (α) =W (αc) =

exp[R(αc)] (R† = −R) that does the transition α = W (αc)αcW †(αc) to the new set αc of clothed-
particles creation/annihilation operators. Its generator R is determined in such a way to remove
from H by means of the similarity transformation

H(α) =W (αc)H(αc)W †(αc) (4.1)

the so-called bad terms that prevent the bare vacuum and the bare one-particle state to be the H
eigenvectors (details in refs. [1], [2], [3] ). It results in the representation H =KF(αc)+KI(αc) =K
desired , where the free part KF(αc) = HF(αc) while operator KI(αc) contains interactions between
the clothed mesons and nucleons and destroys the physical vacuum Ω (the lowest-energy H eigen-
state) and the clothed one-particle states.
Doing so with the conventional scalar (s), pseudoscalar (ps) and vector (v) meson-nucleon cou-
plings determined by formulae (3)-(5) in [8] we encounter the separate four-operator contributions
of class [2.2],

K(2)
I (αc) = K(NN → NN)+K(N̄N̄ → N̄N̄)+K(NN̄ → NN̄)+

K(bN → bN)+K(bN̄ → bN̄)+K(bb′ → NN̄)+K(NN̄ → bb′), (4.2)

responsible for the different 2 � 2 processes. In particular, the N-N interaction operator can be
written as K(NN → NN) = ∑

b
Kb(NN → NN)≡ KNN ,

Kb(NN → NN) =

∫
∑
µ

d p⃗′1d p⃗′2d p⃗1d p⃗2Vb(1′,2′;1,2)

×b†
c(1

′)b†
c(2

′)bc(1)bc(2)∼ b†
cb†

cbcbc, (4.3)

where symbol ∑
µ

denotes summation over nucleon spin projections, 1 = {p⃗1,µ1}, etc. Analytic

expressions for the c-number matrices Vb are given by eqs. (19)-(22) in [8]. Unlike [8], where
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the UCT method has been applied when describing the N-N scattering below the pion production
threshold , let us consider the eigenvalue equation

[HF(α)+HI(α)]|Ψd(P⃗)⟩= Ed |Ψd(P⃗)⟩ (4.4)

or in the CPR
[KF(α)+KI(αc)]|Ψd(P⃗)⟩= Ed|Ψd(P⃗)⟩, (4.5)

with the energy Ed =
√

m2
d + P⃗2, md = mp + mn − εd and deuteron binding energy εd . In the

approximation with KI(αc) = KNN we arrive to

[KN +KNN ] |P⃗;M⟩= Ed |P⃗;M⟩ (4.6)

in the subspace H2N ⊂ H spanned onto the basis b†
cb†

c |Ω⟩ with KN ∼ b†
cbc and KNN ∼ b†

cb†
cbcbc,

where
|P⃗;M⟩=

∫
d p⃗1d p⃗2DM(P⃗; p⃗1µ1, p⃗2µ2)b†

c(p⃗1µ1)b†
c(p⃗2µ2)|Ω⟩, (4.7)

with the coefficients DM(P⃗; p⃗1µ1, p⃗2µ2) = δ (P⃗− p⃗1− p⃗2)ψM(p⃗1µ1, p⃗2µ2), ψM(1,2) =−ψM(2,1).

For our aims it suffices to consider the eigenvalue problem in the deuteron rest frame,

|ψM⟩= [md −KN ]
−1 KNN |ψM⟩, (4.8)

|ψM⟩ ≡ |P⃗ = 0;M⟩=
∫

d p⃗ψM(p⃗µ1,−p⃗µ2)b†
c(p⃗µ1)b†

c(−p⃗µ2)|Ω⟩. (4.9)

In a moving frame the corresponding eigenvector can be determined either by solving eq. (4.6) or
using

|P⃗;M⟩= exp[−iβ⃗ B⃗(αc)]|ψM⟩ (4.10)

In the CPR the boost operator B⃗(αc) ≡W (αc)N⃗(αc)W †(αc) = B⃗(αc) = B⃗F(αc)+ B⃗I(αc) consists
of the free B⃗F and interaction B⃗I parts. Here N⃗ = N⃗F + N⃗I is the entire boost operator for the
interacting fields in the instant form of relativistic dynamics employed. Relevant expressions can
be found in [10]. Perhaps, one should note that the required P̂µ |P⃗;M⟩= Pµ |P⃗;M⟩ follows from the
property of the energy-momentum operator P̂µ = (H, P̂1, P̂2, P̂3) to be the four-vector, viz.,

e−iβ⃗ B⃗P̂µeiβ⃗ B⃗ = P̂νL µ
ν (β⃗ ), (4.11)

L(β⃗ ) =

 L 0
0 = P0/md

... L j
0 = P j/md

· · · · · · · · ·

L 0
i = Pi/md

... L j
i = δ j

i −
PiP j

md(P0+md)

 (4.12)

of the Lorentz transformation md(1,0,0,0)⇒ (P0,P1,P2,P3) = P, (β 1,β 2,β 3) = β⃗ are related to
velocity v⃗ = P⃗/md of the moving frame β⃗ = β n⃗, n⃗ = v⃗/v, tanhβ = v. In order to meet eq. (4.11)
it is sufficient to meet the two Lie-Poincaré commutations[

K, B⃗
]
= iP⃗, [Pi,B j] = iδi jK. (4.13)

6
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To the approximation that leads to KI = KNN the operator BI ∼ b†
cb†

cbcbc.

Using the basis vectors |p(lS)JMJ,T MT ⟩ introduced in [8] we obtain

|ψM,00⟩ ≡ |ψM⟩= 1√
2 ∑

l=0,2

∞∫
0

p2d p |p(l1)1M⟩ψl(p), (4.14)

ψM(p⃗µ1τ1,−p⃗µ2τ2) =
1√
2 ∑ψl(p)Ylml (

ˆ⃗p)(lml1MS|1M)

(
1
2

µ1
1
2

µ2|SMS

)(
1
2

τ1
1
2

τ2|00
)
.

(4.15)
We accept the normalization ⟨ψM′ |ψM⟩= δM′M which is equivalent to

∞∫
0

p2d p
[
ψ2

0 (p)+ψ2
2 (p)

]
= 1. (4.16)

The "radial" components ψl(p)(l = 0,2) meet the set of homogeneous integral equations

ψl(p) =
1

md −2Ep⃗
∑
l′

∞∫
0

k2dkV J=S=1,T=0
l l′ (p,k)ψl′(k). (4.17)

5. Current Density Operator in CPR

We consider the expansion in the R-commutators

Jµ(0) =WJµ
c (0)W

† = Jµ
c (0)+ [R,Jµ

c (0)]+
1
2
[R, [R,Jµ

c (0)]]+ ..., (5.1)

where Jµ
c (0) is the initial current in which the bare operators {α} are replaced by the clothed ones

{αc}. Decomposition (5.1) involves the one-body, two-body and more complicated interaction
currents. In its turn, the operator (5.1) being between the clothed two-nucleon states contributes
as2

ηcJµ(0)ηc = Jµ
one−body + Jµ

two−body, (5.2)

where the operator

Jµ
one−body =

∫
d p⃗′d p⃗Fµ

p,n(p⃗′, p⃗)b†
c(p⃗)bc(p⃗) (5.3)

with
Fµ

p,n(p⃗′, p⃗) = eū(p⃗′)
{

F p,n
1 [(p′− p)2]γµ + iσ µν(p′− p)νF p,n

2 [(p′− p)2]
}

u(p⃗) (5.4)

that describes the virtual photon interaction with the clothed proton (neutron).
The formula (5.3) follows from the observation for which the primary Nöther current operator,
being inserted between the physical (clothed) states |ΨN⟩ = b†

c |Ω⟩, yields the usual on-mass-shell
expression

⟨Ψp,n(p⃗′)|Jµ(0)|Ψp,n(p⃗)⟩= Fµ
p,n(p⃗′, p⃗) (5.5)

2Here ηc is the projection operator on H2N

7
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in terms of the Dirac and Pauli nucleon FFs.
By keeping in the r.h.s. of Eq. (5.2) only the one-body contribution we arrive to certain off-energy-
shell extrapolation of the so-called relativistic impulse approximation (RIA) in the theory of e.m.
interactions with nuclei (bound systems). Of course, the RIA results should be corrected including
more complex mechanisms of the e−d scattering, that are contained in

Jµ
two−body =

∫
d p⃗′1d p⃗′2d p⃗1d p⃗2Fµ

MEC(p⃗′1, p⃗′2; p⃗1, p⃗2)b†
c(p⃗′1)b

†
c(p⃗′1)bc(p⃗1)bc(p⃗2). (5.6)

They are immediately associated with the two-body MECs if one uses the terminology adopted
in the theory of EM interactions with nuclei (see [23]). Analytic expressions for the coefficients
Fµ

MEC stem from the R-commutators (starting with the third one) in the expansion (5.1), which, first,
belong to the class [2.2], as in Eq. (5.6), and, second, depend on even numbers of mesons involved.
Their finding is a separate task that leads to a new (off-shell) family of the MECs.

6. Deuteron Static Moments

Further, with help of the relation

e−iβ⃗ ( q⃗
2 )B⃗J⃗l(0)eiβ⃗ ( q⃗

2 )B⃗ = Jµ(0)L l
µ(−β⃗ (

q⃗
2
)) (6.1)

one can see that
µd = Mz(⃗q = 0) =

1
2md

⟨⃗0;1|[B⃗× J⃗(0)]z |⃗0;1⟩ (6.2)

and we will show our calculations in the approximation, where B⃗ ⇒ B⃗F and J⃗(0)⇒ J⃗one−body. The
former is given by

B⃗F = B⃗nucl =
∫
∑ d p⃗′d p⃗B⃗τ(p⃗′µ ′, p⃗µ)b†

c(p⃗′µ ′τ)bc(p⃗µτ), (6.3)

B⃗τ(p⃗′µ ′, p⃗µ) = i
m
4

Ep⃗′ +Ep⃗√
E p⃗′Ep⃗

u†(p⃗′µ ′)u(p⃗µ)
[

∂
∂ p⃗′

− ∂
∂ p⃗

]
δ (p⃗′− p⃗). (6.4)

while the latter by (5.3) - (5.4) with Fν
τ (p⃗′µ ′, p⃗µ) = epν/E p⃗Fτ

1 (0)δµ ′µ , F p
1 (0) = 1, Fn

1 (0) = 0,
2mF p

2 (0) = µp −1 = 1.793, 2mFn
2 (0) = µn =−1.913.

Now all we need is
i) to calculate vacuum expectation ⟨Ω|bcbc b†

cbc b†
cbc b†

cb†
c |Ω⟩ getting

⟨⃗0;M′|B jJk(0)|⃗0;M⟩= 2
∫
∑d p⃗dq⃗

{
ψ∗

M′(p⃗µ ′
1,−p⃗µ2)B j(p⃗µ ′

1, q⃗µ ′
2)

−ψ∗
M′ (⃗qµ ′

1,−q⃗µ ′
2)B

j (⃗qµ ′
1, p⃗µ2)

}
Fk

τ (⃗qµ ′
2, p⃗µ1)ψM(p⃗µ1,−p⃗µ2), (6.5)

ii) to perform the integration in parts and necessary differentiations that gives the division µd =

µNR
d +µRC

d where

µNR
d =

2m
md

∫
∑d p⃗ψl′(p)ψl(p)⟨Y l′1

11 (
ˆ⃗p)|[µn +µp]Jz − [µn +µp −

1
2
]Lz|Y l1

11(
ˆ⃗p)⟩, (6.6)

8
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µRC
d =

m
md

∫
∑d p⃗ψl′(p)ψl(p)(Ep⃗ −m)

[
µn +µp

E p⃗
+

1−µn −µp

m

]
⟨Y l′1

11 (
ˆ⃗p)|p̂z( ˆ⃗pS⃗)−Sz|Y l1

11(
ˆ⃗p)⟩. (6.7)

L⃗ =−i p⃗× ∂
∂ p⃗

, S⃗ =
1
2
[⃗σ(1)+ σ⃗(2)], J⃗ = L⃗+ S⃗ (6.8)

iii) to utilize properties of the spin-angular functions |Y l1
1M( ˆ⃗p)⟩ deriving the well-known nonrela-

tivistic form

µNR
d =

{
µn +µp −

3
2
[µn +µp −

1
2
]PD

}[ e
2m

]
(6.9)

and the relativistic correction

µRC
d =

1
3
√

2

∞∫
0

p2d p(Ep⃗ −m)

[
µn +µp

E p⃗
+

1−µn −µp

m

]

×
{√

2
[
ψ2

2 (p)−ψ2
0 (p)

]
+ψ2

0 (p)ψ2
2 (p)

}[ e
2m

]
. (6.10)

Moreover, one can show that the deuteron quadrupole moment is expressed through the limit q⃗D⃗(⃗q)
at q⃗ → 0. But for the present calculations we prefer to deal with

Qd =− 1
m2

d

{
⟨⃗0;1|B2

z J0(0)|⃗0;1⟩− ⟨⃗0;0|B2
z J0(0)|⃗0;0⟩

}
(6.11)

After this, by proceeding likely steps i) - iii) we get

Qd = QNR
d +QRC

d . (6.12)

As in case of the magnetic moment we separate the "nonrelativistic" contribution

QNR
d =

1
20

∫
dqq2

{
2
√

2
dψ0(q)

dq

(
dψ2(q)

dq
+3

ψ2(q)
q

)
−
(

dψ2(q)
dq

)2

−6
ψ2

2 (q)
q2

}
(6.13)

and the relativistic correction

QRC
d =

1
m2

d

4

∑
i=1

I(i), (6.14)

I(1) =−1
5

∫
dqq4

{
2
√

2
dψ0(q)

dq

(
dψ2(q)

dq
+3

ψ2(q)
q

)
−
(

dψ2(q)
dq

)2

−6
ψ2

2 (q)
q2

}
, (6.15)

I(2) =−3
√

2
5

∫
dq

q3Eq

Eq +m

[
µn +µp +

Eq

m
(µn +µp −1)

]

×
{

ψ0(q)
dψ2(q)

dq
−ψ2(q)

dψ0(q)
dq

+3
ψ0(q)ψ2(q)

q
+
√

2
ψ2

2 (q)
q

}
, (6.16)

I(3) =
1
3

∫
dq

q4

(Eq +m)2

[
µn +µp −

1
2
+

Eq

m
(µn +µp −1)

]
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×

{
4ψ2

0 (q)+
14

√
2

5
ψ0(q)ψ2(q)+

37
35

ψ2
2 (q)

}
, (6.17)

I(4) =
4
5

∫
dq

q4

E2
q

{
2
√

2ψ0(q)ψ2(q)−ψ2
2 (q)

}[
2E2

q

(
dGp

E(t)
dt

+
dGn

E(t)
dt

)
−

q2 −10Eqm−4m2

4(Eq +m)2 +(µp +µn)g1(q)− (µp +µn −1)g2(q)
]
, (6.18)

g1(q) =
q2 −2Eqm
(Eq +m)2 , g2(q) =

q4 +3q2m2 +4mEqq2 +8Eqm3 +4m4

2m2(Eq +m)2 . (6.19)

Recall that dGτ
E

dt |t=0 =
1
6 < r2 >ch

τ (t = (p′− p)2), where < r2 >ch
τ is the charge r.m.s. radius of the

proton or neutron.

7. Several Numerical Results

Following [8] (see Table 2 therein) the UCT row in Table 1 has been found with help of the
least squares fitting of the on-energy-shell R-matrix elements, these solutions of the of inhomoge-
neous integral equations (66)[8], to ones that are determined by eqs. (71)[8] with the potential B.
In other words, it is the case where the theory is compared with the theory (not the experiment).
One should note that the values of the adjustable parameters in the UCT row in Table 1 differ
(sometimes considerably) from those in the UCT column of Table 2[8] since for describing the
low-energy n− p scattering and deuteron properties one has to extend the energy range of fitting.

Model Meson π η ρ ω δ σ , T = 0(T = 1)
g2/4π [ f/g] 14.4 3 0.9 [6.1] 24.5 2.488 18.3773 (8.9437)

Potential B Λ 1700 1500 1850 1850 2000 2000 (1900)
m 138.03 548.8 769 782.6 938 720 (550)

g2/4π [ f/g] 13.395 5.0 1.2 [6.1] 17.349 5.0 22.015 (5.514)
UCT Λ 2500 1219 1593 2494 2169 1200 (2500)

m 138.03 548.8 769 782.6 938 720 (550)

Table 1: The best-fit parameters for the two models. The row Bonn B (UCT ) taken from Table A.1 in
[24] (obtained by least squares fitting to reproduce the phase shifts and mixing parameters for the Bonn B
potential). All the cutoff parameters Λ are in MeV , and nb = 1 except nρ = nω = 2.

Parameter Bonn B UCT Experiment
as (fm) -23.71 -23.57 -23.748±0.010
rs (fm) 2.71 2.65 2.75±0.05
at (fm) 5.426 5.44 5.419±0.007
rt (fm) 1.761 1.79 1.754±0.008

Table 2: Low-energy parameters of the n− p scattering. Experimental values are from Table 4.2 in [24].

All our calculations have been done with the deuteron components obtained by solving the
coupled equations (4.17) and depicted in fig. 1. Distinctions between the UCT and Bonn B curves
result from the different behavior of the interactions at small distances.
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UCT

Parameter Bonn B NR RC Experiment

εd (MeV) 2.22461 2.224 2.224575

PD (%) 4.99 4.89

µd (e/2mp) 0.8516 0.8521 -8.981·10−4 0.857406∓000001

Qd (fm2) 0.2783 0.2972 3.115·10−3 0.2860∓0.0015

Table 3: Deuteron properties

0 1 2 3 4 5
10-4

10-3

10-2

10-1

100

101

[u
,w

](p
) [

fm
3/

2 ]

p [fm-1]

u(p)

w(p)

Figure 1: Deuteron wave functions ψd
0 (p) = u(p) and ψd

2 (p) = w(p). Solid ( dotted ) curves calculated
with the Bonn B (UCT ) potential.

8. Summary

One more application of the UCT method in the theory of nucleon-nucleon (N−N) interaction
has been presented. We have extended of our previous analysis [8] of the N −N scattering below
the pion production threshold to treat the neutron-proton (n− p) scattering at low energies and the
deuteron static properties. Our calculations of deuteron magnetic and quadrupole moments have
been carried out in the framework of a fresh description of EM interactions with nuclei (bound
systems) using the clothed particle representation of the Hamiltonian, the boost and EM current
density operators for the n− p system. For this exposition we have seen a reasonable treatment of
the low-energy N-N scattering and deuteron properties. In the course of our current work we are
trying to understand to what extent the deuteron quenching in flight affects the deuteron electro-
magnetic form factors.
In our opinion, the exposed approach has promising prospects, e.g., in the theory of decaying states
(after evident refinements), certainly in quantum electrodynamics and, we believe, in quantum
chromodynamics too. Such endeavors are under way.
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