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The average multiplicity of light nuclei and 
-
 -mesons, emitted in He

12
C- and C

12
C -

interactions at 4.2 A GeV/c were studied as a function of number of identified protons.  In both 

interactions, the behaviour of average multiplicity of 
-
 -mesons are in agreement with results 

coming from the Cascade model. The model could not describe the behaviour of average 

multiplicity of light nuclei produced in He
12

C-interactions. In case of C
12

C –interactions the 

model could describe qualitatively the behaviour of the average multiplicity of light nuclei. An 

essential deviation was observed in some of the most central events. We believe that nuclear 

coalescence effect may be a reason of this deviation. 
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1. Introduction 

   In nuclear- nuclear interactions, light nuclei emitted at rapidities close to that of beam or 

target are fragments of colliding nuclei. Light nuclei and antinuclei, are, however, being emitted 

in central kinematic region, at central rapidities. The dominant mechanism may be nuclear 

coalescence effect. Nucleons which have found themselves very close in phase space may form 

nuclei and the process is known as nuclear coalescence effect [1].  

The coalescence model was initially developed for deuteron production considering phase-space 

probability distributions of the proton and neutron [2]. Then the phase-space relation was 

extended for heavier clusters of mass A [3] and now more general form of phase space relation 

[4] is  
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Where   BA is coalescence parameter and is 
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SA is the spin of the cluster of mass A, and N and Z is the neutron and proton numbers of the 

composite particle. The factor Rnp is the ratio of neutrons to protons participating in the collision 

and P0 is momentum radius within which nucleon pairs will fuse. 

  Some other approaches were studied where coalescence parameter BA has strong 

dependence on volume of the interaction zone [5].The relation in equation (1) has been verified 

at Bevalac and AGS energies. The coalescence paramètre BA has shown an  increase with  

transverse cluster mass Mt, and has no dependence on centrality [6]. Variation of BA with 

system, centrality, and collision energy were discussed [7]. Their results are inconsistent with 

model they used, and could not be described the coalescence effect. The results of 

measurements of light nuclei from A=1 to A=7 have shown in [8]. They are unable to extract 

information about the coalescence effect. Different mechanism for light nuclei formation in 

different kinematical regions, Fragmentation at low rapidities and coalescence at mid rapidities 

was observed [9].  The different aspects of coalescence parameter  have studied, and no clear 

information about the coalescence affect was  obtained [10, 11,12]. 
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These results demonstrate that light nuclei production, in nuclear collisions, is an 

important effect which can give some essential information about the formation of complex 

baryon system (light nuclei) and to understand the states of matter just after the Big Bang. 

Mainly, multi nucleon interactions caused light nuclei formations at normal nuclear 

temperature, however, nuclei could be formed as a result of nuclear coalescence effect under 

high pressure but at normal temperature after the Big Bang.  In nuclear collisions, light nuclei, 

emitted as a result of fragmentation must decrease with centrality and should have minimum at 

the most central event and it is possible that light nuclei may be formed as a result of 

coalescence effect and will appear in central events. So the study of centrality dependences of 

light nuclei formation in relativistic light nuclear collisions can give clear information about the 

coalescence mechanism of nuclei formation. Light nuclei interactions were considered to get 

simple physical picture as compared heavy ion collisions.  

  In this paper the light nuclei emission was studied as a function of collision centrality in 

He
12

C- and C
12

C - interactions at 4.2AGev/c. Study of some signatures of nuclear coalescence 

effect is  the main target of investigation. The Experimental data was obtained from 2-m 

propane bubble chamber of LHE, JINR and compared with simulated data coming from the  

Cascade model.  

 

2. Methodology  

The experimental data on He
12

C and 
12

C
12

C interactions at 4.2 AGev/c were obtained 

from 2m propane bubble chamber, JINR, Russia .The chamber was placed in a 1.5 T magnetic 

field, and irradiated with the beams of light relativistic nuclei at the Synchrophasotron. 

Practically all secondary particles emitted at 4𝜋 total solid angle were detected in the chamber. 

The - -mesons were identified quite well in the propane chamber. The average minimum 

momentum for pion registration was set to about 70 MeV/c. The protons were selected by the 

statistical method applied to all positive particles with momentum of p >150 MeV/c. The 

experiment could measure only deutron and some mixture of light nuclei (for details see [13]).   

The average multiplicity of light nuclear fragments was studied as a function of centrality, and 

centrality was fixed by the number of identified protons in an event. The experimental results 

were compared with results coming from simulation with Cascade model. 
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Cascade model [14] is the most popular model which is used to describe the general 

features of relativistic nucleus-nucleus collisions. It is an approach based on simulation using 

Monte-Carlo techniques and is applied to situation where multiple scattering is important. The 

cascade model does not include any medium or collective properties and each colliding nuclei is 

treated as a gas of nucleon bound in a potential well. The Pauli principle and the energy 

momentum conservation are obeyed in each inter-nuclear interaction. The remaining excited 

nuclei, after the cascade stage are described by the statistical theory in the evaporation 

approximation. Model includes nuclear fragments from projectile and target, but does not 

include nuclear coalescence effect [ 15, 16, 17].  

 In the experiment, 39544 events of C
12

C3H8, and 22975 events of He
12

C3H8 interactions 

were used at 4.2 A GeV/c. In the case of cascade code 40000 events of   both C
12

C and He
12

C 

interaction were used. 

3. Results and discussions 

The average multiplicity of the negative pions (<
-
>) in He

12
C- and C

12
C-interactions at 4.2 A 

GeV/c was shown in figure1 (a and b), as a function of the number of identified protons (Np) in 

an event (centrality). The open circles represent experimental data and the corresponding solid 

circles represent the simulated data.  The average multiplicity of 
-
-mesons<

-
> is increasing 

with centrality except at the most central events, where a small decrease was shown. The 

cascade code is in good agreement with experiment for pion production.  
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Fig.1. Average multiplicity of -
-mesons as number of proton (a) He

12
C-inteactions (b) 

C
12

C-interactions. 

  

The values of the average multiplicity of the light nuclei (<N>), produced in He
12

C- and 

C
12

C-interactions at 4.2 A GeV/c as a function of the Np were shown in figure 2(a and b). The 

open circles indicate experimental data, whereas the solid circles represent simulated data. The 

simulated data was normalized to first point for comparison.  One can see that the model could 

not describe the behavior of the <N> as a function of Np for the He
12

C-interactins. Some part of 

the difference may be, due to methodical problems of the experiment. In experiment light nuclei 
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could be measured as some mixture of deuterons, tritium and other fragments, whereas cascade 

model can separate them completely. In figure 2(b) the experimental results have similar 

behavior as model except in the most central region where a small increase was observed 

strangely. The strangeness is, with centrality multiplicity of light nuclei <N> must decrease or 

saturates. It cannot increase at maximum centrality as it follows from model. We think the 

reason of increase in the multiplicity of light nuclei at central events is additional formation of 

light nuclei in dense nuclear medium.  In this medium protons and neutrons which are very 

close in phase space may form light nuclei and this process is known as nuclear coalescence 

effect.  
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Fig.2. Average multiplicity of light nuclei as number of proton (a) He
12

C-interactions 

(b) C
12

C-interactions. 

 

 It was observed from figure 1(b) and figure 2(b) that deviation in multiplicities of 
-
-

mesons and light nuclei is in same region systematically, which may confirm some effect not 

methodical problems, and the effect may be the nuclear coalescence effect. 

4.summary 

The average multiplicity of light nuclei and 
-
 -meson emitted in He

12
C- and 

C
12

C -interactions at 4.2 A GeV/c as a function of centrality were studied. The centrality 

of collisions was fixed by the number of identified protons. The behaviors of the 

average multiplicity of   
-
 -meson as a function of number of protons are in agreement 

with results coming from the Dubna version of cascade model in both interactions. The 

model could not describe qualitatively and quantitatively the behaviors of the average 

multiplicity for light nuclei produced in He
12

C-interactions as a function of centrality. In 

case of C
12

C – interaction the model could describe qualitatively the behaviors of the 

average multiplicity for light nuclei. An essential deviation was observed only in most 

central events when the number of identified protons is limited high – great than 12. In 

this area data coming from the model decrease and saturates. But for the experimental 

data a small increase was observed. The result is strange because the sharp decrease was 

being expected for the light nuclear multiplicity in this area. We believe that nuclear 

coalescence effect may be a reason of this increase. Although some methodical 

problems connected with light nuclei identification may give some contribution in this 

region. To get additional information and confirm the results we are going to do more 

methodical work and include some other simulation code.   
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