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1. Introduction

Net charge event-by-event fluctuations have been proposed as one of the indicators of the for-
mation of quark-gluon plasma (QGP) in high-energy nucleus-nucleus collisions [1, 2]. Various
measures of these fluctuations have been introduced in the literature [1, 2, 3, 4]. Advantages and
disadvantages of these measures and the relations between them are given in [3, 4]. The theoretical
predictions of the value of the fluctuations [1, 2, 5] are not directly consistent with the experimen-
tal results from RHIC [6]. The attempts have been made to take into account the influence of the
different effects on the value of the net charge fluctuations (see for example [7, 8]). At present
the preliminary results extracted from the ALICE experimental data have rather ambiguous inter-
pretation in the framework of existing models [9, 10]. In this connection, we try to describe the
experimental data in the framework of an alternative string-inspired model.

The soft part of multiparticle production at high energy is successfully explained by the string
models [11, 12, 13]. In these models a hadron production is described in the framework of a
two-stage scenario. At the first stage a certain number of quark-gluon strings (colour field tubes)
stretched between the projectile and target partons are formed. At the second stage quark-antiquark
pairs are created from a vacuum by the colour field transforming these strings into the chains
of observed hadrons. It is important that those processes are dominant, in which in a chain the
produced hadrons are ordered in rapidity with a constant density. It means that in string models
one has an approximate conservation of the charge locally in rapidity. The deviation of the charge
created in rapidity interval ∆y from zero is due to the processes, when on the boarders of this
interval only one charged particle (of the created pair with close rapidities) belongs to the interval
∆y.

In string models the positive charge (and the baryon number) of initial nuclear protons is as-
sociated with their valence quarks and is concentrated at projectile and target rapidities. A transfer
of this charge to the mid-rapidity region ∆y is suppressed in the Gribov-Regge picture of the soft
hadron interactions as corresponding to the exchange of reggeons with non-vacuum quantum num-
bers, so the suppression increases with energy. However, the process of the initial nuclear charge
(baryon number) transfer to the mid-rapidity region ∆y can be enhanced at high energies due to the
hard processes (the “stoppage” of valence quarks) if their contribution increases with energy. This
transfer is the second cause of the deviation of the charge from zero in the mid-rapidity region.

Based on this picture of hadronic interactions we formulate a simple model of the net charge
fluctuations.

2. Formulation of the model

The observable ν is determined as the second moment of the difference between the relative
multiplicities N+/⟨N+⟩ and N−/⟨N−⟩ in a given phase space volume as follows:

ν ≡

⟨(
N+

⟨N+⟩
−

N−
⟨N−⟩

)2
⟩
. (2.1)

If the particle distributions are independent from each other, i.e.,

⟨N+N−⟩= ⟨N+⟩⟨N−⟩,
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and Poissonian, i.e.,
D(N+)≡ ⟨N2

+⟩−⟨N+⟩2 = ⟨N+⟩,

D(N−)≡ ⟨N2
−⟩−⟨N−⟩2 = ⟨N−⟩,

the quantity ν is equal to so-called νstat:

νstat =
1

⟨N+⟩
+

1
⟨N−⟩

, (2.2)

where the subscript “stat” stands for “statistical”. The “dynamical” fluctuations is the difference
between the above two quantities:

νdyn = ν −νstat. (2.3)

This measure of the net charge fluctuations has been studied by the STAR Collaboration at RHIC
[6] and the ALICE Collaboration at the LHC [10].

The quantity νdyn can be written as follows:

νdyn =
D(N+)−⟨N+⟩

⟨N+⟩2 +
D(N−)−⟨N−⟩

⟨N−⟩2 −2
⟨N+N−⟩−⟨N+⟩⟨N−⟩

⟨N+⟩⟨N−⟩
. (2.4)

In order to calculate the mean values ⟨N+⟩, ⟨N−⟩, the variances D(N+), D(N−), and the covari-
ance ⟨N+N−⟩− ⟨N+⟩⟨N−⟩ we adopt the formalism used for calculating of long-range (forward–
backward) rapidity correlations in [14, 15, 16, 17]. Namely, we introduce the probability P(N+,N−)

to have N+ positive and N− negative particles in some rapidity interval ∆y in a given event due to a
fragmentation of N strings, independent between themselves:

P(N+,N−) = ∑
N

w(N) ∑
n+1 ,...,n

+
N

∑
n−1 ,...,n

−
N

δN+ n+1 +...+n+N
δN− n−1 +...+n−N

N

∏
i=1

p(n+i ,n
−
i ). (2.5)

Here w(N) is the probability of the formation of N strings in a given event, p(n+i ,n
−
i ) is the prob-

ability to have n+i and n−i particles from the decay of the i-th string in the rapidity interval ∆y
in a given event. It is important to note that we consider that the probability p(n+i ,n

−
i ) does not

factorize into the product of two probabilities, i.e., the corresponding particle distributions are not
independent. Then the following relations take place:

p+(n+i ) = ∑
n−i

p(n+i ,n
−
i ), ∑

n+i

p+(n+i ) = 1,

p−(n−i ) = ∑
n+i

p(n+i ,n
−
i ), ∑

n−i

p−(n−i ) = 1. (2.6)

For simplicity, we assume that all strings, formed in AA collisions at given conditions, are
identical. Then at any i we have

∑
n+i

n+i p+(n+i ) = n+, ∑
n+i

n+2
i p+(n+i ) = n2

+,

∑
n−i

n−i p−(n−i ) = n−, ∑
n−i

n−2
i p−(n−i ) = n2

−,

∑
n+i ,n

−
i

n+i n−i p(n+i ,n
−
i ) = n+n−. (2.7)

3
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We define the correlator for one string as follows:

k ≡
n+n−−n+n−√

d+d−
, (2.8)

where
d+ ≡ n2

+−n2
+, d− ≡ n2

−−n2
−

are the variances of the numbers of positive and negative particles from one string. As it follows
from definition (2.8)

−1 ≤ k ≤ 1.

The stronger the correlation between positive and negative particles produced due to the fragmen-
tation of a string the more the absolute value of the correlator. If the particle distributions are
independent from each other, then the correlator is equal to zero.

The fluctuations in the number of strings are characterized by w(N):

∑
N

w(N) = 1, ∑
N

Nw(N) = ⟨N⟩, ∑
N

N2w(N) = ⟨N2⟩, D(N) = ⟨N2⟩−⟨N⟩2.

Here ⟨N⟩ is the mean number of strings, and D(N) is the variance of the number of strings. Note
that these fluctuations are strongly non-Poissonian [18].

Now we can calculate the mean values, the variances, and the covariance of N+ and N−. Using
(2.5), (2.6), and (2.7), we have

⟨N+⟩ = ∑
N+,N−

N+P(N+,N−)

= ∑
N+,N−

N+∑
N

w(N) ∑
n+1 ,...,n

+
N

∑
n−1 ,...,n

−
N

δN+ n+1 +...+n+N
δN− n−1 +...+n−N

N

∏
i=1

p(n+i ,n
−
i )

= ∑
N

w(N) ∑
n+1 ,...,n

+
N

∑
n−1 ,...,n

−
N

(
n+1 + ...+n+N

) N

∏
i=1

p(n+i ,n
−
i )

= ∑
N

w(N) ∑
n+1 ,...,n

+
N

(
n+1 + ...+n+N

) N

∏
i=1

p+(n+i ) = ∑
N

w(N)Nn+ = ⟨N⟩n+. (2.9)

Similarly, we obtain
⟨N−⟩= ⟨N⟩n−, (2.10)

and
D(N+) = ⟨N⟩d++D(N)n2

+, (2.11)

D(N−) = ⟨N⟩d−+D(N)n2
−, (2.12)

and, using also (2.8),

⟨N+N−⟩−⟨N+⟩⟨N−⟩= ⟨N⟩k
√

d+d−+D(N)n+n−. (2.13)

For the derivation of (2.11)–(2.13) see the Appendix A.
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At high energy one can assume that in the mid-rapidity region the mean number n+ of positive
particles from one string is equal to the mean number n− of negative ones. It is reasonable to
suppose that the corresponding variances are equal to each other too. Let us denote

n ≡ n+ = n− and d ≡ d+ = d−.

Then we can rewrite (2.9)–(2.13) as follows:

⟨N+⟩= ⟨N−⟩= ⟨N⟩n, (2.14)

D(N+) = D(N−) = ⟨N⟩d +D(N)n2, (2.15)

⟨N+N−⟩−⟨N+⟩⟨N−⟩= ⟨N⟩kd +D(N)n2. (2.16)

One can note that at such assumptions
⟨Q⟩= 0, (2.17)

where Q = N+−N− is the net charge, and

⟨Nch⟩= 2⟨N⟩n, (2.18)

where Nch = N++N− is the charged particle multiplicity. Substituting (2.14)–(2.16) in (2.4), we
obtain

νdyn =
2

⟨N⟩n

(
ω(1− k)−1

)
, (2.19)

where

ω ≡ d
n

is the scaled variance. Thus, the measure νdyn is expressed through the parameters characterizing
the individual string and the mean number of strings and does not depend on the variance of the
number of strings, i.e., on the event-by-event fluctuations of this number.

The D measure used by Jeon and Koch [1] and νdyn are related to each other by [19]:

⟨Nch⟩νdyn ≈ D−4. (2.20)

By (2.18) and (2.19) we have
⟨Nch⟩νdyn = 4ω(1− k)−4. (2.21)

This quantity does not depend on the parameters of the event-by-event distribution of the number
of strings. In the following section we focus on rapidity dependence of the net charge fluctuations.

3. Rapidity dependence

In this section we address to dependence of νdyn on the width of the central rapidity interval
∆y. For this reason, we should find out the dependencies on ∆y of all quantities the expression
(2.19) for νdyn consists of. We suppose that all strings formed in AA collision give a contribution
to the mid-rapidity region ∆y, and, therefore, the mean number ⟨N⟩ of strings does not depend

5
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on ∆y. The following ingredient is the mean multiplicity n of positive (negative) particles from a
string. At small values of ∆y one can consider that

n = n0∆y, (3.1)

where n0 is the constant positive (negative) particle multiplicity density (the mean number of posi-
tive (negative) particles per unit rapidity).

The rapidity dependence of the scaled variance ω can be related with (3.1) if we assume that
a distribution of the number of positive (negative) particles in rapidity is uniform. In the case of
the uniform distribution the doubly scaled variance (ω −1)/n does not depend on ∆y (see formula
(15) in [20] and formula (10) in [21], see also the Appendix B). So we can write:

ω −1
n

=C, (3.2)

where C is independent on ∆y. Then by (3.1) and (3.2) we have

ω =Cn0∆y+1. (3.3)

The more sophisticated question is a functional shape of the correlator k. Motivated by the
string fragmentation picture [22, 23, 24], we use the following approximation:

k = 1− exp
(
−∆y

λ0

)
, (3.4)

where λ0 ∼ 1 is the correlation length in rapidity. By (3.4) we consider that the correlation between
the number of positive particles and the number of negative ones, belonging to the rapidity interval
∆y, grows with increasing width of this interval, and k → 0, when ∆y→ 0, and k → 1, when ∆y→∞.
The correlation length λ0 designates the growth rate of the correlator. The stronger the correlation
the less the value of λ0 for a given ∆y.

Now we substitute (3.1), (3.3), (3.4) in (2.19), (2.21) and obtain

νdyn(∆y) =
2

⟨N⟩n0∆y

(
(Cn0∆y+1)exp

(
−∆y

λ0

)
−1

)
, (3.5)

⟨Nch⟩νdyn(∆y) = 4(Cn0∆y+1)exp
(
−∆y

λ0

)
−4. (3.6)

4. Poisson approximation

In this section we assume that the positive (negative) particle production from the decay of one
string obeys the Poisson distribution. For the Poisson distribution the mean value n is equal to the
variance d, and the scaled variance ω = 1. So in the Poisson approximation by (2.19) and (2.21)
we have

νdyn =− 2k
⟨N⟩n

, (4.1)

⟨Nch⟩νdyn =−4k. (4.2)

6
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In this approximation C = 0 (see (3.2)) in (3.5) and (3.6). Then we have

νdyn(∆y) =
2

⟨N⟩n0∆y

(
exp

(
−∆y

λ0

)
−1

)
, (4.3)

⟨Nch⟩νdyn(∆y) = 4exp
(
−∆y

λ0

)
−4. (4.4)

In [6] values of νdyn(∆η)/|νdyn(2)| measured for different ranges of pseudorapidity η are
plotted. Here νdyn(2) is the magnitude of νdyn(∆η) for the pseudorapidity range |η | < 1 (∆η =

2). In our formulae we can approximately replace the rapidity interval ∆y by the pseudorapidity
interval ∆η . Then, using (4.3), for the normalized quantity, experimentally studied by the STAR
Collaboration, we have

νdyn(∆η)

|νdyn(2)|
=

2
∆η

· exp(−∆η/λ0)−1
|exp(−2/λ0)−1|

. (4.5)

For this quantity we have only one parameter, the correlation length λ0, which, nevertheless, en-
ables to describe the experimental data obtained in [6].

In Fig. 1 the data for AuAu collisions at
√

sNN = 62.4 and 200 GeV (0–5% centrality), CuCu
collisions at

√
sNN = 62.4 and 200 GeV (0–10% centrality), pp collisions at

√
s = 200 GeV ob-

tained in [6] and the lines calculated with (4.5) are presented.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

∆η

ν
d

y
n
(∆

η
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|ν
d

y
n
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)|
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λ
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=1.2
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0
=1.7

λ
0
=1.9

λ
0
=5.0

Figure 1: Dynamical fluctuations νdyn, normalized to their value for |η | < 1 (∆η = 2), as function of
∆η . Data for AuAu collisions at

√
sNN = 62.4, 200 GeV (0–5% centrality), CuCu collisions at

√
sNN =

62.4, 200 GeV (0–10% centrality), pp collisions at
√

s = 200 GeV and lines calculated in the Poisson
approximation of our model.

We can see that the correlation length λ0 decreases with increasing energy and atomic number
of colliding nuclei. In the framework of our model this can be interpreted as the formation of more
intensive colour strings in AA collisions with the growth of both the energy and atomic number.
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5. Summary and conclusions

We formulated a simple model of the net charge fluctuations inspired by the string picture of
hadronic interactions. The measure of the dynamical net charge fluctuations νdyn was expressed in
terms of the parameters characterizing the individual string and their event-by-event distribution. It
was shown, in particular, that the so-called D measure of the net charge fluctuations used by Jeon
and Koch [1] depends only on the parameters characterizing the charge fluctuations inside a string
and does not depend on the event-by-event fluctuations of the number of strings.

With some additional assumptions we found the dependence of these measures on the width of
the mid-rapidity interval. Presuming that the positive (negative) particle production from one string
obeys the Poisson distribution, we described the STAR data [6] with one parameter, the correlation
length in rapidity. We found out that this parameter decreases with increasing energy and atomic
number of colliding nuclei. In the framework of our model this fact means the formation of more
intensive colour strings in nucleus-nucleus collisions with the growth of both the energy and atomic
number.
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Appendices

A. Calculation of the variances and the covariance of the numbers of positive and
negative particles

This appendix is devoted to the derivation of (2.11)–(2.13). Here we use (2.5)–(2.8).
To calculate the variances

D(N+)≡ ⟨N2
+⟩−⟨N+⟩2

and
D(N−)≡ ⟨N2

−⟩−⟨N−⟩2

one should calculate ⟨N2
+⟩ and ⟨N2

−⟩.

⟨N2
+⟩ = ∑

N+,N−

N2
+P(N+,N−)

= ∑
N+,N−

N2
+∑

N
w(N) ∑

n+1 ,...,n
+
N

∑
n−1 ,...,n

−
N

δN+ n+1 +...+n+N
δN− n−1 +...+n−N

N

∏
i=1

p(n+i ,n
−
i )

= ∑
N

w(N) ∑
n+1 ,...,n

+
N

∑
n−1 ,...,n

−
N

(
n+1 + ...+n+N

)2
N

∏
i=1

p(n+i ,n
−
i )

= ∑
N

w(N) ∑
n+1 ,...,n

+
N

{
N

∑
i=1

n+2
i +

N

∑
i ̸= j=1

n+i n+j

}
N

∏
i=1

p+(n+i )

8
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= ∑
N

w(N)
{

Nn2
++N(N −1)n2

+

}
= ⟨N⟩n2

++
(
⟨N2⟩−⟨N⟩

)
n2
+

= ⟨N⟩
(

n2
+−n2

+

)
+ ⟨N2⟩n2

+ = ⟨N⟩d++ ⟨N2⟩n2
+. (A.1)

Using (A.1) and (2.9), for the variance we obtain

D(N+) = ⟨N⟩d++ ⟨N2⟩n2
+−⟨N⟩2n2

+ = ⟨N⟩d++D(N)n2
+. (A.2)

Similarly,
⟨N2

−⟩= ⟨N⟩d−+ ⟨N2⟩n2
− (A.3)

and
D(N−) = ⟨N⟩d−+D(N)n2

−. (A.4)

For the calculation of the covariance ⟨N+N−⟩−⟨N+⟩⟨N−⟩ we need to know ⟨N+N−⟩.

⟨N+N−⟩ = ∑
N+,N−

N+N−P(N+,N−)

= ∑
N+,N−

N+N−∑
N

w(N) ∑
n+1 ,...,n

+
N

∑
n−1 ,...,n

−
N

δN+ n+1 +...+n+N
δN− n−1 +...+n−N

N

∏
i=1

p(n+i ,n
−
i )

= ∑
N

w(N) ∑
n+1 ,...,n

+
N

∑
n−1 ,...,n

−
N

(
n+1 + ...+n+N

)(
n−1 + ...+n−N

) N

∏
i=1

p(n+i ,n
−
i )

= ∑
N

w(N) ∑
n+1 ,...,n

+
N

∑
n−1 ,...,n

−
N

{
N

∑
i=1

n+i n−i +
N

∑
i ̸= j=1

n+i n−j

}
N

∏
i=1

p(n+i ,n
−
i )

= ∑
N

w(N)
{

Nn+n−+N(N −1)n+n−
}
= ⟨N⟩n+n−+

(
⟨N2⟩−⟨N⟩

)
n+n−

= ⟨N⟩
(
n+n−−n+n−

)
+ ⟨N2⟩n+n− = ⟨N⟩k

√
d+d−+ ⟨N2⟩n+n−. (A.5)

Using (A.5), (2.9), and (2.10), for the covariance we obtain

⟨N+N−⟩−⟨N+⟩⟨N−⟩ = ⟨N⟩k
√

d+d−+ ⟨N2⟩n+n−−⟨N⟩2n+n−
= ⟨N⟩k

√
d+d−+D(N)n+n−. (A.6)

B. Independence of the doubly scaled variance on the width of the rapidity interval

In this appendix we mean that n is n+i or n−i . Let us separate some subinterval ∆y′ belonging to
the rapidity interval ∆y (∆y′ ⊂ ∆y). Denote by P(n) the probability of the production of n particles
within the acceptance ∆y and by P′(n′) the probability of the production of n′ particles within the
acceptance ∆y′ in a given event. Let p is the probability that the momentum of the particle produced
in the rapidity interval ∆y also belongs to the subinterval ∆y′. In the case of independent particle
production we have

p =
⟨n′⟩
⟨n⟩

. (B.1)

9
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Note that in the case of the uniform distribution within ∆y we also have

p =
⟨n′⟩
⟨n⟩

=
∆y′

∆y
. (B.2)

It is clear that we have the connection between P(n) and P′(n′):

P′(n′) = ∑
n

P(n)Pn(n′), (B.3)

where Pn(n′) is the probability that n′ particles occur in the interval ∆y′, when n particles are
produced within the interval ∆y. For the independent particle production it is given by the binomial
distribution:

Pn(n′) =Cn′
n pn′(1− p)n−n′ (B.4)

(see the paragraph before formula (15) in [20]).
The formulae (B.3) and (B.4) directly lead to the following relations:

⟨n′⟩= ∑
n′

n′P′(n′) = ∑
n′

∑
n

n′P(n)Pn(n′) = ∑
n

P(n)pn = p⟨n⟩, (B.5)

⟨n′2⟩ = ∑
n′

n′2P′(n′) = ∑
n′

∑
n

n′2P(n)Pn(n′)

= ∑
n

P(n)
(

p2n2 + p(1− p)n
)
= p2⟨n2⟩+ p(1− p)⟨n⟩. (B.6)

We have used that for binomial distribution

n′ = pn, D(n′)≡ n′2 −n′
2
= p(1− p)n.

The formulae (B.5) and (B.6) after simple algebra lead to

D(n′)
⟨n′⟩ −1

⟨n′⟩
=

ω(n′)−1
⟨n′⟩

=
ω(n)−1

⟨n⟩
=

D(n)
⟨n⟩ −1

⟨n⟩
= const, (B.7)

which does not depend on the width of the rapidity interval.
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