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The low dimensional field theory corresponding to Balitsky-Kovchegov hierarchy of equations
with homogeneous initial conditions is derived using two approaches. The first approach is
based on stochastic Balitsky-Kovchegov equation and uses Martin-Siggia-Rose auxiliary re-
sponse fields. The second one is based on dimensional reduction of BFKL pomeron field theory
action functional. Constructed field field theory has a structure of Reggeon Field Theory which is
much simpler that BFKL pomeron field theory.
It is shown that conventional non-stochastic Balitsky-Kovchegov equation is a classical field equa-
tions of this field theory with specific boundary conditions. Since BFKL pomeron field theory
contains both target and projectile currents it is argued that in case of scattering different class of
boundary conditions should be used.
Using the boundary conditions that directly respect target-projectile duality different class of evo-
lution equations is constructed. Analogous to non-stochastic Balitsky-Kovchegov equation it
also contains additional terms which represents pomeron merging. These evolution equations al-
lows consistent definition of various experiment related quantities such as inclusive and exclusive
cross-section in case of scattering of spatially homogeneous target and projectile.
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1. Introduction

It was proposed in [1] that BFKL field theory can be obtained from stochastic version of
Balitsky-Kovchegov equation [2, 3, 4] by means of action functional. However obtained field
theory has rather complex structure and it is very hard to derive practical consequences from it. It is
therefore interesting to check which form will have over variants of Balitsky-Kovchegov equation.

Balitsky-Kovchegov equation in coordinate space describes the dipole scattering amplitude
N (~x1,~x2,Y ) on some target(large nucleus). For spatially homogeneous target one could remove
impact parameter dependence and work with value N (x12,Y ). It was shown in [5] that there exist
evolution equation for N :

∂Y N (L,Y ) = αsχ(−∂L)N (L,Y )−αsN
2(L,Y ) (1.1)

where αs = Ncαs/π , L = ln(k2/k2
0), with k0 some low momentum scale, e.g. ΛQCD and N (L,Y )

is defined through conventional dipole scattering cross sections.

N (L = ln(k2/k2
0)) =

∫ d2x12

2πx2
12

e−ikx12N(x12,Y ) (1.2)

The simplicity of non-linear term in (1.1) is a result of eikonal approximation for double dipole
cross section. Without it one gets the spatial homogeneous BFKL equation.

The operator χ(−∂L) is defined by the characteristic BFKL function [6, 7] as the Mellin trans-
form of the LO BFKL kernel in momentum space (see [8] for precise definition of χ)

χ(γ) = 2ψ(1)−ψ(γ)−ψ(1− γ), (1.3)

where ψ(γ) = Γ
′
(γ)

Γ(γ) is digamma function.
If one wants to get some results without eikonal approximation (1.1) one arrives to equation

which contains double dipole cross section.

∂Y N (L,Y ) = αsχ(−∂L)N (L,Y )−αsN2(L,Y ) (1.4)

In this case equation for double dipole cross section should be written. It has form similar to
(1.4) and contain triple dipole cross section and so on. This well known process gets us spatially
homogeneous Balitsky-Kovchegov hierarchy.

Without nonlinear term (1.4) can be written as:

∂Y N (L,Y ) = αsχ(−∂L)N (L,Y ) (1.5)

with corresponding solution:

N (L,Y ) = eαsχ(−dL)Y N (L,0) (1.6)

Representing solution of (1.4) in the form

N (L,Y ) = eαsχ(−dL)Y N (L,0)+
∫ Y

0
eαsχ(−dL)(Y−y)R(L,y)dy (1.7)
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and substituting (1.7) into (1.4) following equation for R(L,y) can be written

R(L,y) =−αsN2(L,y) (1.8)

which gives

N (L,Y ) = eαsχ(−dL)Y N (L,0)−αs

∫ Y

0
eαsχ(−dL)(Y−y)N2(L,y)dy (1.9)

It is clearly seen that (1.9) resembles scattering amplitude for Reggeon field theory in space
L,Y . Obliviously similar representation can be written for N2(L,Y ) and high dipole cross section.

It is however non oblivious how to obtain such decomposition from full Balitsky-Kovchegov
hierarchy. And if we want Reggeon field theory equivalent Balitsky-Kovchegov hierarchy we
should take some over way. Such method is commonly known is stochastic physics was first
applied in QCD in [9].

2. Stochastic process

It is known that Balitsky-Kovchegov hierarchy can be obtained from some particular stochastic
differential equation.

∂tu(L, t) = χ(−∂L)u(L, t)−u2(L, t)+
√

P(u(L, t))η(L, t) (2.1)

where t = αsY , u(L, t) is stochastic variable which averages to correlators Ni and η(L, t) is Gaus-
sian noise with properties:

〈η(L, t)〉= 0 (2.2)

〈η(L1, t1)η(L2, t2)〉= δ (L1−L2)δ (t1− t2) (2.3)

Particular form of functional P(u(L, t)) which is polynomial in u(L, t) depends on how dipole
merging is accounted. Three common forms mostly used:

P(u(L, t)) = 0 (2.4)

P(u(L, t)) = u(L, t) (2.5)

P(u(L, t)) = u(L, t)(1−u(L, t)) (2.6)

Equation (2.4) corresponds to simple Balitsky-Kovchegov hierarchy without pomeron merg-
ing, (2.5) to Balitsky-Kovchegov hierarchy with dipole merging, (2.6) contains stochastic term
which is proposed to give additional dense-dilute symmetry.

Generation functional Z[J] for correlators of u(L, t) in case of equation (2.1) can be written as

Z[J] =
∫

e
∫

J(L,t)u(L,t)dtdL
δ (∂tu(L, t)−χ(−∂L)u(L, t)+u2(L, t)−

√
P(u(L, t))η(L, t))DuDη

(2.7)
where we should impose Ito prescription for time discretization to remove complicated Jacobian in
functional integral. Noise term can be easily integrated over and we can obtain Onsager-Machlup
generating functional. However this functional is quite non linear and not easily identified with
QFT.

3
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Previous formula can be rewritten with help of Martin-Siggia-Rose [10] auxiliary fields u†(L, t)
as (skipping unnecessary L and t):

Z[J] =
∫

e
∫

JudtdLe
∫

u†(∂t u−χ(−∂L)u+u2−
√

P(u)η))dtdLDuDiu†Dη (2.8)

Since noise η is Gaussian integration over noise η is rather trivial:

F(u,u†) =
∫

e−
∫

u†
√

P(u)ηdtdLDη ∝ eu†2P(u) (2.9)

which gives Z[J] as:

Z[J] =
∫

e
∫
(u†(∂t u−χ(−∂L)u)+u†u2+u†2P(u)+Ju)dtdLDuDiu† (2.10)

with actions corresponding to (2.4), (2.5), (2.5) equals to

S =
∫

(u†(∂tu−χ(−∂L)u)+u†u2)dtdL (2.11)

S =
∫

(u†(∂tu−χ(−∂L)u)+u†u2 +u†2u)dtdL (2.12)

S =
∫

(u†(∂tu−χ(−∂L)u)+u†u2 +u†2u−u†2u2)dtdL (2.13)

From view of these generation functionals for different forms of Balitsky-Kovchegov hierar-
chy it is clear why (2.5) is referred as hierarchy with pomeron merging. From field theory point of
view it contain addition interaction term. If we use analogy with charged scalar field theory inter-
action term in (2.4) can be called pomeron splitting term and additional term in (2.5) can be called
pomeron merging term. Changed term in (2.6) does not impose additional symmetry to theory.

All three field theory has simple symmetry structure (translational invariance in L and t). This
is much simpler that BFKL field theory which is invariant under conformal transformation. It is
easy to check that free motion equation has form of BFKL equation for all three field theories.

3. BFKL reduction

Balitky-Kovchegov hierarchy of equations is tree level approximation of so called BFKL field
theory. It is therefore interesting to check if (2.10) corresponds in some sense to BFKL field theory
generating fuctional.

BFKL field theory [11] can be written in form of functional integral [12]:

ZBFKL[J,J†] =
∫

DΦDΦ
†eS (3.1)

where S = S0+SI +SE with terms corresponding to propagation of free BFKL pomerons, merging
and splitting of BFKL pomerons, interaction with the target and projectile. Free action is given by:

S0 =
∫

dyd2x1d2x2Φ
†(x1,x2,y)∇2

1∇
2
2 [∂y +H]Φ(x1,x2,y) (3.2)
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Pomeron interaction term is local in rapidity and is given by:

SI =
2πα

2
s

Nc

∫
dy

d2x1d2x2d2x3

x2
12x2

23x2
31

[
(L12Φ

†(x1,x2,y))Φ(x2,x3,y)Φ(x3,x1,y)+

(L12Φ(x1,x2,y))Φ†(x2,x3,y)Φ†(x3,x1,y)
]

(3.3)

Term containing interaction with the target and projectile function is given by

SE =−
∫

dyd2x1d2x2Φ(x1,x2,y)J (x1,x2,y)+Φ
† (x1,x2,y)J† (x1,x2,y) (3.4)

where differential operator L12 = x4
12∇2

1∇2
2. J (x1,x2,y), J† (x1,x2,y) represent projectile and

target currents. From point of view of evolution BK equation −J†(x1,x2,y) is initial condition for
Φ(x1,x2,y). From structure of (3.1) it is not evident that (2.10) can be reduced from (3.1).

Attempts to obtain simpler generation functional was tried earlier in [13]. Obtained form is
almost identical to (2.10) with few particularities. First one is that reduction was done by introduc-
tions of additional auxiliary fields into action. It can be shown that this can be avoided if we restrict
ourselves to following currents:

J(x1,x2,y) = x2
12

∫
∞

0
kdkJ0(x12k) j(k,y) (3.5)

J†(x1,x2,y) = ∇
2
1∇

2
2

(
x2

12

∫
∞

0
kdkJ0(x12k) j†(k,y)

)
(3.6)

For these currents it can be shown that if we ignore second term in (3.3), ZBFKL[J,J†] can be
represented as:

ZBFKL[J,J†] = Z′[ j, j†]Z0 (3.7)

where Z0 is independent of j and j†

Second one is that obtained Pomeron merging term has quite different structure (in notation of
[13]):

Sφ =
2α2

s Nc

π

∫
dyd2k(∇2

kk4
∇

2
kφ(k,y))φ †(k,y)φ †(k,y) (3.8)

Such structure arises from structure of Pomeron merging vertex in (3.3):

1
x2

12x2
23x2

31
L12Φ(x1,x2,y))Φ†(x2,x3,y)Φ†(x3,x1,y) (3.9)

However unlike Pomeron splitting vertex in (3.3) which was theoretically derived, structure of
Pomeron merging vertex was conjectured in [11] to provide symmetry between target and projec-
tile. It can be shown what we can introduce different Pomeron merging vertex:

1
x2

12x2
23x2

31
Φ(x1,x2,y))P23Φ

†(x2,x3,y)P31Φ
†(x3,x1,y) (3.10)

where Pi j =
1

xi j
L−1

i j x2
i j This vertex with redefinition of Φ† also gives theory symmetric between

target and projectile. With this merging vertex (3.1) can be reduced to (2.10) up to renormalization.

5
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4. Physical quantities

Constructing field theory from (2.1) we ignored question of initial condition for u(L, t) at t = 0.
For first order evolution equation we could replace initial condition with addition of current term
−J†(L, t) = uT (L)δ (t) in right-side of equation (2.1). Therefore generation functional Z[J] can be
rewritten as:

Z[J,J†] =
∫

e
∫
(u†(∂t u−χ(−∂L)u)+u†u2+u†2P(u)+Ju+J†u†)dtdLDuDiu† (4.1)

Let’s however consider projectile-target exclusive scattering process for projectile in eikonal
approximation and rapidity Y = T

αs
. For scattering amplitude we can write

S =
1
Z0

∑
δZ
δ iJ
|J=0

un
P(L)
n!

=
Z[uP(L)δ (t−T ),−uT (L)δ (t)]

Z0
(4.2)

Therefore it can be argued that if we want to obtain scattering amplitude for exclusive scatter-
ing we should use currents:

j(L, t) =−uT (L)δ (t) (4.3)

j†(L, t) = uP(L)δ (t−T )

or border condition:

u(L, t = 0) = uT (L) (4.4)

u†(L, t) = uP(L) (4.5)

For generational functional Z[J,J†] we can build classical equation of motion for fields u,u†.

∂tu = χ(−∂L)u−u2−2u†u (4.6)

−∂tu† = χ(∂L)u†−u†2−2u†u

In special case u† = 0 which corresponds to limit case of dilute projectile it gives rise to
original BK equation (1.1).

Using diffusive approximation with variable substitution(which represents traveling of wave)

χ0 = γ0χ
′
0 , t =

2τ

γ2
0 χ ′′0

, L =

√
χ ′′0

γ2
0 χ ′′0

x−2
γ0χ ′′0 −χ ′0

γ2
0 χ ′′0

τ (4.7)

we can get two non linear diffusion equations:

∂τφ = ∂
2
x φ +φ −φ

2−2φφ
† (4.8)

−∂τφ
† = ∂

2
x φ

† +φ
†−φ

†2−2φ
†
φ

Although simple solutions the form of traveling waves do exists (for example [14])

φ ,φ † =
1
2

(
1± tanh(z)− 1

2cosh2(z)

)
(4.9)

z =
x

2
√

2
− τ

4

they are unphysical (raise with momentum).
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5. Conclusion

In this work we obtained field theory for spatially homogeneous Balitsky-Kovchegov hierarchy
there are many open questions left. Classical equations of motion can be constructed and have
dilute projectile limit corresponding with original Balitsky-Kovchegov equation. Compared to
Balitsky-Kovchegov equation full version of classical equations contain additional equation which
corresponds to projectile evolution. This additional equation also introduces additional border
condition. Although solutions for this equations is not known yet except for some unphysical
cases, they could be solved at least numerically (work in progress) and used to construct scattering
amplitude of spatially homogeneous target and projectile with Pomeron merging and splitting at
least at tree level.

We thank A.V. Dmitriev, A.A. Popov and A.V. Abramovsky for useful discussions. The work
is supported by RFBR grant 11-02-01395-a.
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