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1. Introduction

The covariant quark model with infrared confinement developed in a series of papers (see
Refs. [1]-[5]) is a successful tools for a unified description of the multiquark states: mesons,
baryons, tetraquarks, etc. The covariant quark model is an effective quantum field approach to
hadronic interactions based on the interaction Lagrangian between hadrons and their constituent
quarks. Knowing a corresponding interpolating quark current allows calculating the matrix ele-
ment of physical processes in a consistent way. A distinctive feature ofthis approach is that the
multiquark states, such as baryons (three quarks), tetraquarks (fourquarks), etc., can be consid-
ered and described as rigorously as the simplest quark-antiquark systems (mesons). The coupling
constants between hadrons and their interpolating quark currents are determined from the connec-
tion conditionZH = 0 proposed in Refs. [6, 7] and used further in numerous subfields of particle
physics (for a review, see Refs. [8, 9, 10]). HereZH is a renormalization constant of the hadron
wave function. The matrix elements of physical processes are determined by a set of associated
quark diagrams, which are constructed according to 1/Nc−expansion. In the covariant quark model
an infrared cutoff is effectively introduced in the space of Fock–Schwinger parameters, which are
integrated out in the expressions for the matrix elements. Such a procedureallows one to eliminate
all the threshold singularities associated with quark production and therebyensures quark confine-
ment. The model has no ultraviolet divergences due to vertex hadron–quark form factors, which
describe a nonlocal structure of hadrons. The covariant quark model has a few free parameters: a
mass of constituent quarks, an infrared cutoff parameter that characterizes confinement region, and
parameters that describe an effective size of hadrons.

We review here the last applications of the covariant quark model for studying the prop-
erties of theBs−meson, the light baryons and tetraquarks. The form factors of theB(Bs) →
P(V)−transitions are evaluated in the full kinematical region of momentum transfer squared. As
an application of the obtained results the widths of theBs−nonleptonic decays are calculated. The
modesD−

s D+
s , D∗−

s D+
s +D−

s D∗+
s andD∗−

s D∗+
s give the largest contribution to∆Γ for theBs− B̄s

system. The modeJ/ψφ is suppressed by the color factor but it is interesting for the search of
CP-violating New-Physics possible effects in theBs− B̄s mixing.

The static properties of the proton and neutron, and theΛ-hyperon (magnetic moments and
charge radii) and the behavior of the nucleon form factors at low momentumtransfers are de-
scribed. The conservation of gauge invariance of the electromagnetic transition matrix elements in
the presence of a nonlocal coupling of the baryons to the three constituent quark fields is discussed.

The consequences of treating the X(3872) meson as a tetraquark boundstate are explored. The
decay widths of the observed channelsX → J/ψ +2π(3π) andX → D̄0+D0+π0 via the inter-
mediate off–shell statesX → J/ψ +ρ(ω) andX → D̄+D∗ are calculated. Its one-photon decay
X → γ + J/ψ is also analyzed. The matrix element of the transitionX → γ + J/ψ is calculated
and its gauge invariance is proved. For reasonable values of the size parameterΛX of the X(3872)
consistency with the available experimental data is found. The possible impactof the X(3872) in a
s-channel dominance description of theJ/ψ dissociation cross section is discussed.
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2. Covariant quark model

The coupling of a hadronH to its constituent quarks is described by the Lagrangian:

Lint = gH ·H(x) ·JH(x) (2.1)

where the quark currents are defined as

JM(x) =
∫

dx1

∫
dx2FM(x,x1,x2) · q̄a

f1(x1)ΓM qa
f2(x2) Meson

JB(x) =
∫

dx1

∫
dx2

∫
dx3FB(x,x1,x2,x3)

× Γ1qa1
f1
(x1)

(
qa2

f2
(x2)CΓ2qa3

f3
(x3)

)
· εa1a2a3 Baryon

JT(x) =
∫

dx1 . . .
∫

dx4FT(x,x1, . . . ,x4)

×
(

qa1
f1
(x1)CΓ1qa2

f2
(x2)

)
·
(

q̄a3
f3
(x3)Γ2Cq̄a4

f4
(x4)

)
· εa1a2cεa3a4c Tetraquark

whereΓ is a Dirac matrix or a string of Dirac matrices which projects onto the spin quantum
number of the hadronH(x). The matrixC = γ0γ2 is the usual charge conjugation matrix and the
ai (i = 1,2,3) are color indices. The functionFH is related to the scalar part of the Bethe-Salpeter
amplitude and characterizes the finite size of the hadron. To satisfy translational invariance the
functionFH has to fulfil the identityFH(x+a,x1+a, . . . ,xn+a) = FH(x,x1, . . . ,xn) for any four-
vector “a”. In the following we use a specific form for the scalar vertex function

FH(x,x1, . . . ,xn) = δ

(
x−

n

∑
i=1

wixi

)
ΦH

(
∑
i< j

((xi −x j)
2
)
, (2.2)

whereΦH is the correlation function of the constituent quarks with massesmi ,(i = 1, . . . ,n) and

the mass ratioswi = mi/
n
∑
j=1

mj .

The coupling constantgH in Eq. (2.1) is determined by the so-calledcompositeness condition
originally proposed in Refs. [6, 7] and extensively used in Refs. [8, 9, 10]. The compositeness
condition requires that the renormalization constant of the elementary hadron field H(x) is set to
zero

ZH = 1− g2
H Π′

H(m
2
H) = 0 (2.3)

whereΠ′
H is the derivative of the hadron mass operator. To clarify the physical meaning of the

compositeness condition in Eq. (2.3), we first want to remind the reader thatthe renormalization
constantZ1/2

H can also interpreted as the matrix element between the physical and the corresponding
bare state. The conditionZH = 0 implies that the physical state does not contain the bare state
and is appropriately described as a bound state. The interaction Lagrangian of Eq. (2.1) and the
corresponding free parts of the Lagrangian describe both the constituents (quarks) and the physical
particles (hadrons) which are viewed as the bound states of the quarks.As a result of the interaction,
the physical particle is dressed, i.e. its mass and wave function have to be renormalized. The

3



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
)
0
5
7

Multiquark states in the covariant quark confinement model Mikhail A. Ivanov

conditionZH = 0 also effectively excludes the constituent degrees of freedom from the space of
physical states. It thereby guarantees that there is no double counting for the physical observable
under consideration. The constituents exist only in virtual states. One of the corollaries of the
compositeness condition is the absence of a direct interaction of the dressed charged particle with
the electromagnetic field. Taking into account both the tree-level diagram and the diagrams with
the self-energy insertions into the external legs (i.e. the tree-level diagram timesZH −1) yields a
common factorZH which is equal to zero.

We have used free fermion propagators for the quarks given by

Si(k) =
1

mi− 6k (2.4)

with an effective constituent quark massmi .
For calculational convenience we will choose a simple Gaussian form for the vertex function

Φ̄H(−k2). The minus sign in the argument of this function is chosen to emphasize that we are
working in Minkowski space. One has

Φ̄H(−k2) = exp
(
k2/Λ2

H

)
(2.5)

where the parameterΛH characterizes the size of the hadronH. Sincek2 turns into−k2
E in Eu-

clidean space the form (2.5) has the appropriate fall-off behavior in the Euclidean region. We
emphasize that any choice forΦH is appropriate as long as it falls off sufficiently fast in the ultra-
violet region of Euclidean space to render the corresponding Feynman diagrams ultraviolet finite.
As mentioned before we shall choose a Gaussian form forΦH for calculational convenience.

We have included the confinement of quarks to our model in Ref. [1]. It was done, first, by
introducing the scale integration in the space ofα-parameters, and, second, by cutting this scale
integration on the upper limit which corresponds to an infrared cutoff. In this manner one removes
all possible thresholds presented in the initial quark diagram. The cutoff parameter is taken to
be the same for all physical processes. We have adjusted other model parameters by fitting the
calculated quantities of the basic physical processes to available experimental data.

Let us give the basic features of the infrared confinement in our model. Allphysical matrix
elements are described by the Feynman diagrams which are the convolution ofthe free quark
propagators and vertex functions. Letn, ℓ and m be the number of the propagators, loops and
vertices, respectively. In Minkowski space theℓ-loop diagram will be represented as

Π(p1, ..., pm) =
∫
[d4k]ℓ

m

∏
i1=1

Φi1+n
(
−K2

i1+n

) n

∏
i3=1

Si3(k̃i3 +vi3),

K2
i1+n = ∑

i2

(k̃(i2)i1+n+v(i2)i1+n)
2 (2.6)

where the vectors̃ki are linear combinations of the loop momentaki . Thevi are linear combinations
of the external momentapi to be specified in the following. The strings of Dirac matrices appearing
in the calculation need not concern us since they do not depend on the momenta. The external

momentapi are all chosen to be ingoing such that one has
m
∑

i=1
pi = 0.

4
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Using the Schwinger representation of the local quark propagator one has

S(k) = (m+ 6k)
∞∫

0

dβ e−β (m2−k2) (k2 < m2) .

For the vertex functions one takes the Gaussian form. One has

Φi+n
(
−K2) = exp

[
βi+nK2] i = 1, ...,m, (2.7)

where the parametersβi+n = si = 1/Λ2
i are related to the size parameters. The integrand in Eq. (2.6)

has a Gaussian form with the exponentialkak+2kr+R wherea is ℓ× ℓ matrix depending on the
parameterβi , r is theℓ-vector composed from the external momenta, andR is a quadratic form
of the external momenta. Tensor loop integrals are calculated with the help of the differential
representation

kµ
i e2kr =

1
2

∂
∂ r i µ

e2kr,

We have written a FORM [11] program that achieves the necessary commutations of the differential
operators in a very efficient way. After doing the loop integrations one obtains

Π =

∞∫

0

dnβ F(β1, . . . ,βn) ,

whereF stands for the whole structure of a given diagram. The set of Schwingerparametersβi can
be turned into a simplex by introducing an additionalt–integration via the identity

1=

∞∫

0

dtδ (t −
n

∑
i=1

βi)

leading to

Π =

∞∫

0

dttn−1

1∫

0

dnα δ
(

1−
n

∑
i=1

αi

)
F(tα1, . . . , tαn). (2.8)

There are altogethern numerical integrations:(n−1) α–parameter integrations and the integration
over the scale parametert. The very larget-region corresponds to the region where the singularities
of the diagram with its local quark propagators start appearing. However, as described in [1], if one
introduces an infrared cut-off on the upper limit of the t-integration, all singularities vanish because
the integral is now convergent for any value of the set of kinematic variables. We cut off the upper
integration at 1/λ 2 and obtain

Πc =

1/λ 2∫

0

dttn−1

1∫

0

dnα δ
(

1−
n

∑
i=1

αi

)
F(tα1, . . . , tαn).

By introducing the infrared cut-off one has removed all potential thresholds in the quark loop
diagram, i.e. the quarks are never on-shell and are thus effectively confined. We take the cut-off

5
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parameterλ to be the same in all physical processes. The numerical evaluations have been done
by a numerical program written in the FORTRAN code.

As a further illustration of the infrared confinement effect relevant to theapplications in this
paper we consider the case of a scalar one–loop two–point function. One has

Π2(p
2) =

∫
d4kE

π2

e−sk2
E

[m2+(kE + 1
2 pE)2][m2+(kE − 1

2 pE)2]

where we have collected all the nonlocal Gaussian vertex form factors inthe numerator factore−sk2
E .

Note that the momentakE, pE are Euclidean momenta. Doing the loop integration one obtains

Π2(p
2) =

∞∫

0

dt
t

(s+ t)2

1∫

0

dα exp
[
− tzloc+

st
s+ t

z1

]
,

zloc = m2−α(1−α)p2, z1 =
(

α − 1
2

)2
p2. (2.9)

The integralΠ2(p2) can be seen to have a branch point atp2 = 4m2 becausezloc is zero when
α = 1/2. By introducing a cut-off on thet-integration one obtains

Πc
2(p

2) =

1/λ 2∫

0

dt
t

(s+ t)2

1∫

0

dα exp
[
− tzloc+

st
s+ t

z1

]
. (2.10)

The one-loop two-point functionΠc
2(p

2) Eq.(2.10) can be seen to have no branch point atp2 = 4m2.
The gauging of the nonlocal Lagrangian in Eq. (2.1) proceeds in a way suggested in Refs. [12,

13] and used before by us (see, for instance, Refs. [14, 15]). Inorder to guarantee local invariance
of the nonlocal Lagrangian in Eq. (2.1) one multiplies each quark fieldq(xi) with a gauge field
exponential:

qi(xi)→ e−ieq1I(xi ,x,P)qi(xi) (2.11)

where

I(xi ,x,P) =

xi∫

x

dzµAµ(z). (2.12)

The pathP connects the end-points of the path integral. One then expands the gauge exponential
up to the requisite power ofeqAµ needed in the perturbative series. We need to know only the
derivatives of the path integral expressions when calculating the perturbative series. Therefore, we
use the formalism suggested in [12, 13] which is based on the path-independent definition of the
derivative ofI(x,y,P):

lim
dxµ→0

dxµ ∂
∂xµ I(x,y,P) = lim

dxµ→0
[I(x+dx,y,P′)− I(x,y,P)] (2.13)

where the pathP′ is obtained fromP by shifting the end-pointx by dx. The definition (2.13) leads
to the key rule

∂
∂xµ I(x,y,P) = Aµ(x) (2.14)

6
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which in turn states that the derivative of the path integralI(x,y,P) does not depend on the pathP
originally used in the definition.

As a result of this rule we are getting the part of the Lagrangian which describes the nonlocal
interaction of the hadron, quark and electromagnetic fields to the first order in the electromagnetic
charge.

3. Bs-meson

We give below the necessary definitions of the leptonic decay constants, invariant form factors
and helicity amplitudes.

The leptonic decay constants of the pseudoscalar and vector mesons aredefined by

NcgP

∫
d4k

(2π)4i
Φ̃P(−k2) tr

[
OµS1(k+w1p)γ5S2(k−w2p)

]
= fP pµ , p2 = m2

P,

NcgV

∫
d4k

(2π)4i
Φ̃V(−k2) tr

[
OµS1(k+w1p) 6εVS2(k−w2p)

]
= mV fV εµ

V , p2 = m2
V , (3.1)

whereNc = 3 is the number of colors.
Herein our primary subjects are the following matrix elements, which can be expressed via

dimensionless form factors:

〈P′
[q̄1q3]

(p2) | q̄2Oµ q1 |P[q̄3q2](p1)〉 =

= NcgPgP′

∫
d4k

(2π)4i
Φ̃P

(
− (k+w13p1)

2
)

Φ̃P′

(
− (k+w23p2)

2
)

× tr

[
Oµ S1(k+ p1)γ5S3(k)γ5S2(k+ p2)

]
= F+(q

2)Pµ +F−(q
2)qµ , (3.2)

〈P′
[q̄1q3]

(p2) | q̄2(σ µνqν)q1 |P[q̄3q2](p1)〉 =

= NcgPgP′

∫
d4k

(2π)4i
Φ̃P

(
− (k+w13p1)

2
)

Φ̃P′

(
− (k+w23p2)

2
)

× tr

[
σ µνqν S1(k+ p1)γ5S3(k)γ5S2(k+ p2)

]
=

i
m1+m2

(
q2Pµ −q·Pqµ) FT(q

2), (3.3)

〈V(p2,ε2)[q̄1q3] | q̄2Oµ q1 |P[q̄3q2](p1)〉 =

= NcgPgV

∫
d4k

(2π)4i
Φ̃P

(
− (k+w13p1)

2
)

Φ̃V

(
− (k+w23p2)

2
)

× tr

[
Oµ S1(k+ p1)γ5S3(k) 6ε †

2 S2(k+ p2)

]
(3.4)

=
ε †

ν
m1+m2

(
−gµν P·qA0(q

2)+Pµ Pν A+(q
2)+qµ Pν A−(q

2)+ i εµναβ Pα qβ V(q2)
)
,

7
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〈V(p2,ε2)[q̄1q3] | q̄2(σ µνqν(1+ γ5))q1 |P[q̄3q2](p1)〉 =

= NcgPgV

∫
d4k

(2π)4i
Φ̃P

(
− (k+w13p1)

2
)

Φ̃V

(
− (k+w23p2)

2
)

× tr

[
(σ µνqν(1+ γ5))S1(k+ p1)γ5S3(k) 6ε †

2 S2(k+ p2)

]
(3.5)

= ε †
ν

(
−(gµν −qµqν/q2)P·qa0(q

2)+(Pµ Pν −qµ Pν P·q/q2)a+(q
2)+ i εµναβ Pα qβ g(q2)

)
.

Here,P= p1+ p2, q= p1− p2, ε†
2 · p2 = 0, p2

i = m2
i . Since there are three sorts of quarks involved

in these processes, we introduce the notation with two subscriptswi j = mq j/(mqi +mq j ) (i, j =
1,2,3) so thatwi j +w ji = 1. The form factors defined in Eq. (3.5) satisfy the physical requirement
a0(0) = a+(0), which ensures that no kinematic singularity appears in the matrix element atq2 = 0.
For reference it is useful to relate the form factors we have defined to those used, e.g., in Ref. [16],
which are denoted by a superscriptc in the following formulae:

F+ = f c
+ , F− =− m2

1−m2
2

q2 ( f c
+− f c

0) , FT = f c
T ,

A0 =
m1+m2

m1−m2
Ac

1 , A+ = Ac
2 , A− =

2m2(m1+m2)

q2 (Ac
3−Ac

0) , V =Vc ,

a0 = Tc
2 , g= Tc

1 , a+ = Tc
2 +

q2

m2
1−m2

2

Tc
3 . (3.6)

We note in addition that the form factorsAc
i (q

2) satisfy the constraints:Ac
0(0) = Ac

3(0) and

2m2Ac
3(q

2) = (m1+m2)A
c
1(q

2)− (m1−m2)A
c
2(q

2) .

It is convenient to express all physical observables through the helicityform factorsHm. The
helicity form factorsHm can be expressed in terms of the invariant form factors in the following
way (see Refs. [17, 18, 19]):

(a) SpinS= 0:

Ht =
1√
q2

{
(m2

1−m2
2)F++q2F−

}
,

H± = 0, (3.7)

H0 =
2m1 |p2|√

q2
F+ .

(b) SpinS= 1:

Ht =
1

m1+m2

m1 |p2|
m2

√
q2

{
(m2

1−m2
2)(A+−A0)+q2A−

}
,

8
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H± =
1

m1+m2

{
−(m2

1−m2
2)A0±2m1 |p2|V

}
, (3.8)

H0 =
1

m1+m2

1

2m2

√
q2

{
−(m2

1−m2
2)(m

2
1−m2

2−q2)A0+4m2
1 |p2|2A+

}
,

where|p2| = λ 1/2(m2
1,m

2
2,q

2)/(2m1) is the momentum of the outgoing particles in the rest frame
of ingoing particle.

The effective Hamiltonian describing theBs-nonleptonic decays is given by (see, Ref. [20])

Heff = −GF√
2

VcbV
†
cs

6

∑
i=1

Ci Qi ,

Q1 = (c̄a1ba2)V−A(s̄a2ca1)V−A, Q2 = (c̄a1 ba1)V−A,(s̄a2 ca2)V−A,

Q3 = (s̄a1ba1)V−A(c̄a2ca2)V−A, Q4 = (s̄a1ba2)V−A(c̄a2ca1)V−A,

Q5 = (s̄a1ba1)V−A(c̄a2ca2)V+A, Q4 = (s̄a1ba2)V−A(c̄a2ca1)V+A, (3.9)

where the subscriptV −A refers to the usual left–chiral currentOµ = γµ(1− γ5) andV +A to the
usual right–chiral oneOµ

+ = γµ(1+ γ5). Theai denote the color indices.
We consider the nonleptonic decays of theBs-meson intoD−

s D+
s , D−

s D∗+
s , D∗−

s D+
s , D∗−

s D∗+
s

and J/ψ φ . The calculation of the matrix elements is straightforward. It directly leads to the
representation corresponding tonaivefactorization.

The widths can be conveniently expressed in terms of the helicity form factors and leptonic
decay constants. In the case of the color-allowed decays one has

Γ(Bs → D−
s D+

s ) =
G2

F

16π
|q2|
m2

Bs

[λ (s)
c ]2

(
Ceff

2 mDs fDs HBsDs
t (m2

Ds
)+2Ceff

6 f PS
Ds

FBsDs
S (m2

Ds
)
)2

,

Γ(Bs → D−
s D∗+

s ) =
G2

F

16π
|q2|
m2

Bs

[λ (s)
c ]2

(
Ceff

2 mDs fDs HBsD∗
s

t (m2
Ds
)+2Ceff

6
mBs|q2|

mD∗
s

f PS
Ds

FBsD∗
s

PS (m2
Ds
)

)2

,

Γ(Bs → D∗−
s D+

s ) =
G2

F

16π
|q2|
m2

Bs

[λ (s)
c ]2

(
Ceff

2 mD∗
s

fD∗
s
HBsDs

0 (m2
D∗

s
)
)2

,

Γ(Bs → D∗−
s D∗+

s ) =
G2

F

16π
|q2|
m2

Bs

[λ (s)
c ]2

(
Ceff

2 mD∗
s

fD∗
s

)2 ∑
i=0,±

(
HBsD∗

s
i (m2

D∗
s
)
)2

. (3.10)

Here,λ (s)
c = |VcbV†

cs| and |q2| is the momentum of the second outgoing particle in the rest frame
of Bs−meson. The Wilson coefficients are combined asCeff

2 = C2+ ξ C1+C4+ ξ C3 andCeff
6 =

C6+ξ C5. where a color factorξ = 1/Nc will be suppressed in the numerical calculations according
to 1/Nc−expansion. Also we do not take into account the annihilation channels whichare available
for the color-allowed decays.

The width of the color-suppressedBs → J/ψ φ decay is written as

Γ(Bs → J/ψ φ) =
GF

16π
|q2|
m2

Bs

[λ (s)
c ]2

(
Ceff

1 +Ceff
5

)2(
mJ/ψ fJ/ψ

)2 ∑
i=0,±

(
HBsJ/ψ

i (m2
J/ψ)

)2
,(3.11)

where the Wilson coefficients are combined asCeff
1 =C1+ξ C2+C3+ξ C4 andCeff

5 =C5+ξ C6..
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The first application of our relativistic quark model with infrared confinement to the descrip-
tion of the physical observables was done in our paper [1]. We have fitted the model parameters to
the leptonic and radiative decay constants of both pseudoscalar and vector mesons. Then we have
calculated transition form factors and the widths of the Dalitz decays and compared the results
with available experimental data. Here we calculate the form factors describing the transitions of
the heavyB(Bs)−mesons into the light ones, e.g.π,K,ρ,K∗,φ . These quantities are of great inter-
est due to their applications to semileptonic, nonleptonic and rare decays of theB andBs−mesons.
Basically, they are calculated within the light-cone sum rules (LCSR) in the region of large recoils
(small transfer momentum squared). Our approach allows one to evaluate the form factors in the
full kinematical regions including zero recoil. First, we update the model parameters by fitting them
to the leptonic decay constants, see Table 1, and the widths of the radiative decays, see, Table 2.
The results of the fit for the values of quark masses, the infrared cutoffand the size parameters are
given in Eqs. (3.12), (3.13) and (3.14), respectively.

mu ms mc mb λ

0.235 0.424 2.16 5.09 0.181 GeV

(3.12)

Λπ ΛK ΛD ΛDs ΛB ΛBs ΛBc Λρ

0.87 1.04 1.47 1.57 1.88 1.95 2.42 0.61 GeV

(3.13)

Λω Λφ ΛJ/ψ ΛK∗ ΛD∗ ΛD∗
s

ΛB∗ ΛB∗
s

0.47 0.88 1.48 0.72 1.16 1.17 1.72 1.71 GeV

(3.14)

In Figs. 1-4 we plot our calculated form factors in the entire kinematical region 0≤ q2 ≤ q2
max.

For comporison we also show the results obtained in the light-cone sum rules [26]. The figures
highlight the wide range of phenomena accessible within our approach.

As was suggested in Ref. [27], one can check how well the form factors satisfy the low recoil
relations among them. In Fig. 5 we plot the ratios

R1 =
T1(q2)

V(q2)
, R2 =

T2(q2)

A1(q2)
, R3 =

q2

m2
B

T3(q2)

A2(q2)
. (3.15)

which in the symmetry limit should be all of order 1− (2αs/(3π) ln(µ/mb), i.e. near one. One can
see that similar to the LCSR form factors, it works reasonably well forR1 andR2 but not forR3.

It is interesting to compare the behavior of the form factor calculated from the triangle loop-
diagram with those from vector-dominance model (VDM). In the case of theB−π−transition, one
has

FBπ
VDM (q2) =

FBπ
+ (0)

m2
B∗ −q2

.

10
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Table 1: Leptonic decay constantsfH (MeV) used in the least-squares fit for our model parameters.

This work Other Ref.

fπ 128.7 130.4± 0.2 [21, 22]

fK 156.1 156.1± 0.8 [21, 22]

fD 205.9 206.7± 8.9 [21, 22]

fDs 257.5 257.5± 6.1 [21, 22]

fB 191.1 192.8± 9.9 [23]

fBs 234.9 238.8± 9.5 [23]

fBc 489.0 489± 5 [24]

fρ 221.1 221± 1 [21]

This work Other Ref.

fω 198.5 198± 2 [21]

fφ 228.2 227± 2 [21]

fJ/ψ 415.0 415± 7 [21]

fK∗ 213.7 217± 7 [21]

fD∗ 243.3 245± 20 [25]

fD∗
s

272.0 272± 26 [25]

fB∗ 196.0 196± 44 [25]

fB∗
s

229.0 229± 46 [25]

Table 2: Electromagnetic decay widths (keV) used in the least-squares fit for our model parameters.

Process This work Data [21]

π0 → γγ 5.06×10−3 (7.7±0.4)×10−3

ηc → γγ 1.61 1.8± 0.8

ρ± → π±γ 76.0 67± 7

ω → π0γ 672 703± 25

K∗± → K±γ 55.1 50± 5

K∗0 → K0γ 116 116± 10

D∗± → D±γ 1.22 1.5± 0.5

J/ψ → ηcγ 1.43 1.58± 0.37

The curves are plotted in Fig. 6. One can see that they agree with quite goodaccuracy. That means
the quark loop in some sense contains an information on theB∗-pole.

As an application of the obtained results we evaluate the widths of theBs-nonleptonic decays.
The modesD−

s D+
s , D∗−

s D+
s +D−

s D∗+
s and D∗−

s D∗+
s give the largest contribution to∆Γ for the

Bs− B̄s system. The modeJ/ψφ is suppressed by the color factor but it is interesting for the search
of CP-violating New-Physics possible effects in theBs− B̄s mixing.

11



P
o
S
(
B
a
l
d
i
n
 
I
S
H
E
P
P
 
X
X
I
)
0
5
7

Multiquark states in the covariant quark confinement model Mikhail A. Ivanov

0 5 10 15 20 25 30

q
2
 (GeV

2
)

0

2

4

6

8

10

our
LCSR

B-π:  F
+
(q

2
)

0 5 10 15 20 25

q
2
 (GeV

2
)

0

1

2

3

4

5

our
LCSR

B-K:   F
+
(q

2
)

0 5 10 15 20 25 30

q
2
 (GeV

2
)

0

5

10

15

20

our
LCSR

B-π:   F
T
(q

2
)

0 5 10 15 20 25

q
2
 (GeV

2
)

0

1

2

3

4

5

our
LCSR

B-K:   F
T
(q

2
)

Figure 1: Our results for the form factors appearing in Eqs. (3.2) & (3.3) – Left panel, B−π−transition;
andright panel, B−K−transition. For comporison we plot the curves given by LCSR from Ref. [26].

For the CKM-matrix elements we use the values from [21]

|Vud| |Vus| |Vub| |Vcd| |Vcs| |Vcb|

0.974 0.225 0.00389 0.230 0.975 0.0406

(3.16)

For the Wilson coefficients we take [28]

C1 C2 C3 C4 C5 C6

−0.257 1.009 −0.005 −0.078 0.000 0.001

(3.17)

evaluated to next-to-next-to leading logarithmic accuracy inMS(NDR) renormalization scheme at
the scaleµ = 4.8 GeV [29].

We also need the values of theBs− φ−transition evaluated atq2 = m2
J/ψ . We give them in

Table 3 and compare with results of Ref. [30].
Finally, we give our results for the branching ratios in Table 4. One can see that there is good

agreement with available experimental data.
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Figure 2: Our results for the form factors appearing in Eqs. (3.4) & (3.5) for B− ρ−transition. For
comporison we plot the curves given by LCSR from Ref. [26].

Table 3: The relevantBs−φ−form factors atq2 = m2
J/ψ calculated in our work. For comparison we give

the results of Ref. [30].

This work Ref. [30]

A1(m2
J/ψ) 0.37 0.42±0.06

A1(m2
J/ψ) 0.48 0.38±0.06

V(m2
J/ψ) 0.56 0.82±0.12
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Figure 3: Our results for the form factors appearing in Eqs. (3.4) & (3.5) for B−K∗−transition. For
comporison we plot the curves given by LCSR from Ref. [26].

Table 4: Branching ratios (%) of theBs-nonleptonic decays calculated in our approach.

Process This work Data [21]

Bs → D−
s D+

s 1.65 1.04+0.29
−0.26

Bs → D−
s D∗+

s +D∗−
s D+

s 2.40 2.8±1.0

Bs → D∗−
s D∗+

s 3.18 3.1±1.4

Bs → J/ψφ 0.14 0.14±0.05
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Figure 4: Our results for the form factors appearing in Eqs. (3.4) & (3.5) for Bs− φ−transition. For
comporison we plot the curves given by LCSR from Ref. [26].
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Figure 5: Our results for the ratios of the form factors appearing in Eq. (3.15) forB−K∗−transition.
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Figure 6: The comparison of the results for theB− π− form factor obtained on the one hand from the
quark-loop diagram and on the another hand from the VDM-monopole.
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4. Light baryons

Let us begin our discussion with the proton. The coupling of a proton to its constituent quarks
is described by the Lagrangian

L
p

int(x) = gN p̄(x) ·Jp(x)+gN J̄p(x) · p(x) , (4.1)

where we make use of the same interpolating three-quark currentJp(J̄p) as in Ref. [14]

Jp(x) =
∫

dx1

∫
dx2

∫
dx3FN(x;x1,x2,x3)J(p)3q (x1,x2,x3) ,

J(p)3q (x1,x2,x3) = ΓAγ5da1(x1) · [εa1a2a3 ua2(x2)CΓAua3(x3)] ,

(4.2)

J̄p(x) =
∫

dx1

∫
dx2

∫
dx3FN(x;x1,x2,x3) J̄(p)3q (x1,x2,x3) ,

J̄(p)3q (x1,x2,x3) = [εa1a2a3 ūa3(x3)ΓACūa2(x2)] · d̄a1(x1)γ5ΓA .

The matrixC= γ0γ2 is the usual charge conjugation matrix and theai (i = 1,2,3) are color indices.
There are two possible kinds of nonderivative three-quark currents: ΓA⊗ΓA = γα ⊗γα (vector cur-
rent) andΓA⊗ΓA = 1

2 σαβ ⊗σαβ (tensor current) withσαβ = i
2(γ

αγβ − γβ γα). The interpolating
current of the neutron and the corresponding Lagrangian are obtained from the proton case via
p→ n andu↔ d. As will become apparent later on, one has to consider a general linear superpo-
sition of the vector and tensor currents according to

JN = xJT
N +(1−x)JV

N , N = p,n (4.3)

The electromagnetic vertex functionΛµ
p(p, p′) of the proton consists of four pieces represented

by the four two-loop quark diagrams in Fig. 7.
Let us briefly describe a check on the gauge invariance of our calculation. Without gauge in-

variance there are three independent Lorentz structures in the electromagnetic proton vertex which
can be chosen to be

Λµ
p(p, p

′) = γµ F p
1 (q

2)− iσ µq

2mN
F p

2 (q
2)+qµ F p

NG(q
2) , (4.4)

whereσ µq = i
2(γ

µγν − γνγµ)qν . The form factorF p
NG(q

2) characterizes the non–gauge invariant
piece and must therefore vanish for anyq2 in a calculation which respects gauge invariance. For
the four contributions of Fig. 2a-2d we found that

F p
NGd(q

2)≡ 0, F p
NGu(q

2)≡ 0, F p
NG(b)(q

2)≡−F p
NG(a)(q

2) ∀q2. (4.5)

It means that the non–gauge invariant contributions of the two vertex diagrams are zero while they
vanish for the sum of the two bubble diagrams.

The electromagnetic vertex function of the neutron is obtained from that of the proton by
replacingmu ↔ md, eu ↔ ed andmp → mn. FN

1 (q2) andFN
2 (q2) are the Dirac and Pauli nucleon

form factors which are normalized to the electric chargeeN and anomalous magnetic momentkN

(kN is given in units of the nuclear magnetone/2mp), respectively, i.e. one hasFN
1 (0) = eN and
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Figure 7: Electromagnetic vertex function of the proton: (a) vertex diagram with the e.m. current attached
to d-quark; (b) vertex diagram with the e.m. current attached to u-quark; (c) bubble diagram with the e.m.
current attached to the initial state vertex; (d) the bubblediagram with e.m. current attached to the final state
vertex.

FN
2 (0) = kN. In particular, one can analytically check by using the integration-by-part identity that

the Dirac form factor of the neutron is equal to zero atq2 = 0.
The nucleon magnetic momentsµN = FN

1 (0) +FN
2 (0) are known experimentally with high

accuracy [21]

µexpt
p = 2.79 µexpt

n =−1.91. (4.6)

We will use these values to fit the value of the nucleon size parameter. We obtain

vector current=⇒ ΛN = 0.36GeV µp = 2.79 µn =−1.70, (4.7)

tensor current=⇒ ΛN = 0.61GeV µp = 2.79 µn =−1.69. (4.8)

It is convenient to introduce the Sachs electromagnetic form factors of nucleons

GN
E(q

2) = FN
1 (q2)+

q2

4m2
N

FN
2 (q2) , GN

M(q2) = FN
1 (q2)+FN

2 (q2) . (4.9)

The slopes of these form factors are related to the well-known electromagnetic radii of nucleons:

〈r2
E〉N = 6

dGE
N(q

2)

dq2

∣∣∣∣
q2=0

, 〈r2
M〉N =

6

GN
M(0)

dGN
M(q2)

dq2

∣∣∣∣
q2=0

. (4.10)

We would like to emphasize that reproducing data on the neutron charge radius 〈r2
E〉n is a

nontrivial task (see e.g. discussion in Ref.[31]). As well-known the naive nonrelativistic quark
model based on SU(6) spin-flavor symmetry implies〈r2

E〉n ≡ 0. The dynamical breaking of the
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SU(6) symmetry based on the inclusion of the quark spin-spin interaction generates a nonvanishing
value of〈r2

E〉n. From this point of view the dominant contribution to the〈r2
E〉n comes from the Pauli

term:

〈r2
E〉n ≃ 6

4m2
N

Fn
2 (0) .

The experimental data on the nucleon Sachs form factors in the space-likeregionQ2=−q2≥ 0
can be approximately described by the dipole approximation

Gp
E(q

2)≈ Gp
M(q2)

1+µp
≈ Gn

M(q2)

µn
≈ 4m2

N

q2

Gn
E(q

2)

µn
≈ 1
(
1−q2/0.71GeV2

)2 ≡ DN(q
2) .

According to present data the dipole approximation works well up to 1 GeV2 (with an accuracy
of up to 25%). For higher values ofQ2 the deviation of the nucleon form factors from the dipole
approximation becomes more pronounced. In particular, the best description of magnetic moments,
electromagnetic radii and form factors is achieved when we consider a superposition of theV– and
T–currents of nucleons according to Eq. (4.3) withx= 0.8. For the size parameter of the nucleon
we takeΛN = 0.5 GeV.

In Table 5 we present the results for the magnetic moments and electromagnetic radii for this
set of model parameters. In Fig. 8 we present our results for theq2 dependence of electromagnetic
form factors in the regionQ2 ∈ [0,1]GeV2. Fig. 8 also shows plots of the dipole approximation
to the form factors. The agreement of our results with the dipole approximation is satisfactory.
Inclusion of chiral corrections as, for example, developed and discussed in [32] may lead to a
further improvement in the lowQ2 description.

Table 5: Electromagnetic properties of nucleons.

Quantity Our results Data [21]

µp (in n.m.) 2.96 2.793

µn (in n.m.) -1.83 -1.913

r p
E (fm) 0.805 0.8768± 0.0069

〈r2
E〉n (fm2) -0.121 -0.1161± 0.0022

r p
M (fm) 0.688 0.777± 0.013± 0.010

rn
M (fm) 0.685 0.862+0.009

−0.008
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Figure 8: Sachs nucleon form factors in comparions with the dipole representation in the space–like region
Q≤ 1 GeV2.
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5. The X(3872)-meson as a tetraquark

A narrow charmonium–like stateX(3872) was observed in 2003 in the exclusive decay process
B± → K±π+π−J/ψ [33]. TheX(3872) decays intoπ+π−J/ψ and has a mass ofmX = 3872.0±
0.6(stat)±0.5(syst) very close to theMD0 +MD∗0 = 3871.81±0.25 mass threshold [21]. Its width
was found to be less than 2.3 MeV at 90% confidence level. The state was confirmed in B-decays
by the BaBar experiment [34] and inpp production by the Tevatron experiments [35].

From the observation of the decayX(3872)→ J/ψγ reported by [36], it was shown that the
only quantum numbers compatible with the data areJPC = 1++ or 2−+. However, the observation
of the decays intoD0D

0π0 by the Belle and BaBar collaborations [37] allows one to exclude the
choice 2−+ because the near-threshold decayX → D0D

0π0 is expected to be strongly suppressed
for J = 2.

The Belle collaboration has reported evidence for the decay modeX → π+π−π0J/ψ with a
strong three-pion peak between 750 MeV and the kinematic limit of 775 MeV [36], suggesting that
the process is dominated by the sub-threshold decayX → ωJ/ψ . It was found that the branching
ratio of this mode is almost the same as that of the modeX → π+π−J/ψ :

B(X → J/ψπ+π−π0)

B(X → J/ψπ+π−)
= 1.0±0.4(stat)±0.3(syst). (5.1)

These observations imply strong isospin violation because the three-pion decay proceeds via an
intermediateω-meson with isospin 0 whereas the two-pion decay proceeds via the intermediate
ρ-meson with isospin 1. Also the two-pion decay via the intermediateρ-meson is very difficult to
explain by using an interpretation of theX(3872) as a simplecc̄ charmonium state with isospin 0.

There are several different interpretations of theX(3872) in the literature: a molecule bound
state (D0D

∗0
) with small binding energy, a tetraquark state composed of a diquark and antidiquark,

threshold cusps, hybrids and glueballs. A description of the current theoretical and experimental
situation for the new charmonium states may be found in the reviews [38].

We provided in Ref. [2] an independent analysis of the properties of theX(3872) meson which
we interpret as a tetraquark state as in [39]. The authors of [39] suggested to consider theX(3872)
meson as aJPC= 1++ tetraquark state with a symmetric spin distribution:[cq]S=0 [c̄q̄]S=1+[cq]S=1 [c̄q̄]S=0,
(q= u,d). The nonlocal version of the four-quark interpolating current reads

Jµ
Xq
(x) =

∫
dx1 . . .

∫
dx4δ

(
x−

4

∑
i=1

wixi

)
ΦX

(
∑
i< j

(xi −x j)
2
)

× 1√
2

εabcεdec

{
[qa(x4)Cγ5cb(x1)][q̄d(x3)γµCc̄e(x2)]+(γ5 ↔ γµ)

}
, (5.2)

wherew1 =w2 =mc/2(mq+mc) andw3 =w4 =mq/2(mq+mc). The matrixC= γ0γ2 is the charge
conjugation matrix. The effective interaction Lagrangian describing the coupling of the mesonXq

to its constituent quarks is written in the form

Lint = gX Xqµ(x) ·Jµ
Xq
(x), (q= u,d). (5.3)

The stateXu breaks isospin symmetry maximally so the authors of [39] take the physical states to
be a linear superposition of theXu andXd states according to

Xl ≡ Xlow = Xu cosθ +Xd sinθ ,
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Xh ≡ Xhigh = −Xu sinθ +Xd cosθ . (5.4)

The mixing angleθ can be determined from fitting the ratio of branching ratios Eq. (5.1).
The coupling constantgX in Eq. (5.3) will be determined from the compositeness condition:

ZX = 1−Π′
X(m

2
X) = 0,

whereΠX(p2) is the scalar part of the vector-meson mass operator. The corresponding three-loop
diagram describing the X-meson mass operator is shown in Fig. 9.

Figure 9: Diagram describing theXu-meson mass operator.

Next we evaluate the matrix elements of the transitionsX → J/ψ +ρ(ω) andX → D+ D̄∗.
The relevant Feynman diagrams are shown in Fig. 10.

Figure 10: Feynman diagrams describing the decaysX → J/ψ +ρ(ω) andX → D+ D̄∗.

Since the X(3872) is very close to the respective thresholds in both cases, the intermediateρ,
ω andD∗ mesons have to be treated as off-shell particles. Using the calculated matrix elements for
the decayX → J/ψ +ρ(ω) one can evaluate the decay widthsX → J/ψ +2π(3π). We employ
the narrow width approximation for this purpose.

There are two new free parameters: the mixing angleθ in Eq. (5.4) and the size parameterΛX.
We have varied the parameterΛX in a large interval and found that the ratio

Γ(Xu → J/ψ +3π)
Γ(Xu → J/ψ +2π)

≈ 0.25

is very stable under variations ofΛX. Hence, by using this result and the central value of the
experimental data given in Eq. (5.14), one findsθ ≈±18.4o for Xl ("+") andXh ("-"), respectively.
This is in agreement with the results obtained in both [39]:θ ≈±20o and [40]:θ ≈±23.5o. The
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decay width is quite sensitive to the change of the size parameterΛX. A natural choice is to take a
value close toΛJ/ψ andΛηc which are both around 3 GeV. We have varied the size parameterΛX

from 2.4 up to 4 GeV and found that the decay widthΓ(X → J/ψ +nπ) decreases from 0.25 MeV
monotonously. This result is in accordance with the experimental boundΓ(X(3872)) ≤ 2.3 MeV
and the result obtained in [39]: 1.6 MeV.

In a similar way we calculate the width of the decayX → D0D̄0π0 which was observed by the
Belle Coll. and reported in [37]. As in the previous case we have variedΛX from 2.5 up to 4 GeV
and found that the decay widthΓ(Xl → D̄0D0π0) decreases from 1.1 MeV monotonously. We plot
the dependence of the calculated decay widths on the size parameterΛX in Fig. 11.

2.5 3 3.5 4
Λ

X
 (GeV)

0

0.5

1

1.5

Γ(X -> D
0
 + D

0
 + π0

),  MeV

Γ(X -> J/ψ + nπ),  MeV

Figure 11: The dependence of the decay widthsΓ(Xl → D̄0D0π0) and Γ(X → J/ψ + nπ) on the size
parameterΛX.

Using the results of [21], one calculates the experimental rate ratio

Γ(X → D0D̄0π0)

Γ(X → J/ψπ+π−)
= 10.5±4.7 (5.5)

The theoretical value for this rate ratio depends only weakly on the size parameterΛX:

Γ(X → D0D̄0π0)

Γ(X → J/ψπ+π−)

∣∣∣
theor

= 4.5±0.2. (5.6)

The theoretical error reflects theΛX dependence of the ratio. The ratio lies within the experimental
uncertainties given by Eq. (5.5).

The matrix element of the decayX(3872) → J/ψ + γ can be calculated from the Feynman
diagrams shown in Fig. 12.

The invariant matrix element for the decay is given by

M(Xq(p)→ J/ψ(q1)+ γ(q2)) = i(2π)4δ (4)(p−q1−q2)εµ
X ερ

γ εν
J/ψ Tµρν(q1,q2) (5.7)
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Figure 12: Feynman diagrams describing the decayX → J/ψ + γ.

We have analytically checked on the gauge invariance of the unintegrated transition matrix
element by contraction with the photon momentumq2 which yieldsqρ

2Tµρν(q1,q2) = 0 using the
identities

S(k2) 6q2S(k2+q2) = S(k2+q2)−S(k2) ,
1∫

0

dτ Φ̃′(−τ a− (1− τ)b)(a−b) = Φ̃(−b)− Φ̃(−a).

If one takes the on-mass shell conditions

εµ
X pµ = 0, εν

J/ψq1ν = 0, ερ
γ q2ρ = 0 (5.8)

into account one can write down five seemingly independent Lorentz structures

Tµρν(q1,q2) = εq2µνρq2
1W1+ εq1q2νρq1µ W2+ εq1q2µρq2ν W3+ εq1q2µνq1ρ W4+ εq1µνρq1q2W5 .

Further, using the gauge invariance condition

qρ
2Tµρν = q1q2εq1q2µν(W4+W5) = 0

one hasW4 =−W5 which reduces the set of independent covariants to four:

Tµρν(q1,q2) = εq2µνρq2
1W1+ εq1q2νρq1µ W2+ εq1q2µρq2ν W3+

(
εq1q2µνq1ρ −q1q2εq1µνρ W4

)
.

The gauge invariance conditionW4 =−W5 provides for a numerical check on the gauge invariance
of our calculation as described further on.
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However, there are two nontrivial relations among the four covariants which can be derived by
noting [46] that the tensor

Tµ[ν1ν2ν3ν4ν5] = gµν1εν2ν3ν4ν5 +cycl.(ν1ν2ν3ν4ν5) (5.9)

vanishes in four dimensions since it is totally antisymmetric in the five indices(ν1,ν2,ν3,ν4,ν5).
Upon contraction withqµ

1 qν1
1 qν2

2 andqµ
2 qν1

1 qν2
2 one finds

q2
1εq2µνρ + εq1q2νρq1µ +

(
εq1q2µνq1ρ −q1q2εq1µνρ

)
= 0

q1q2εq2µνρ − εq1q2νρq1µ − εq1q2µρq2ν = 0.

It reduces the set of independent covariants to two. This is the appropriate number of independent
covariants since the photon transition is described by two independent amplitudes as e.g. by theE1
andM2 transition amplitudes.

The quantitiesWi are represented by the four-fold integrals

Wi =

∞∫

0

dt

1∫

0

d3β Fi(t,β1,β2,β3) (5.10)

where we have suppressed the additional dependence of the integrandFi on the set of variables
p2,q2

1,q
2
2;mq,mc,sX,sJ/ψ with sX = 1/Λ2

X andsJ/ψ = 1/Λ2
J/ψ . The integrals in Eq. (5.10) have

branch points atp2 = 4(mq+mc)
2 (diagram in Fig. 12-a) and atp2 = 4m2

c (diagrams in Figs. 12-
b,c,d). At these points the integrals become divergent in the convential sense whent → ∞. Under
numerical check on gauge invariance of the amplitudeTµρν(q1,q2), we assume that the X-meson
momentum squared is below the nearest unitarity threshold, i.e.p2 < 4m2

c. The gauge invariance
condition is independent of the overall couplingsgX andgJ/ψ and thus the numerical check can be
done irrelevant of their values.

In the next step we introduce an infrared cutoff 1/λ 2 on the upper limit of the t-integration
in Eq. (5.10). In this manner one removes all possible singularities and thereby guarantees quark
confinement. However, the contributions coming from the bubble diagrams in Figs. 12-b,c,d blow
up atp2 = m2

X compare with the contribution from the diagram in Fig. 12-a. The bubble diagrams
are needed only to guarantee the gauge invariance of the matrix element. Forphysical applications
one should take into account only the gauge invariant part of the diagramin Fig. 12-a.

It is convenient to present the decay width via helicity or multipole amplitudes. One has

Γ(X → J/ψ + γ) =
1

12π
|q2|
m2

X

(
|HL|2+ |HT |2

)
=

1
12π

|q2|
m2

X

(
|AE1|2+ |AM2|2

)
(5.11)

where the helicity amplitudesHL andHT are expressed in terms of the Lorentz amplitudes as

HL = imXmJ/ψ |q2|
[
W1+

mX

m2
J/ψ

|q2|W3−W4

]
,

HT = −im2
J/ψ |q2|

[
W1+

mX

m2
J/ψ

|q2|W2−
(

1+
mX|q2|
m2

J/ψ

)
W4

]
,

|q2|=
m2

X −m2
J/ψ

2mX
. (5.12)
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2.5 3 3.5 4
Λ

X
 (GeV)

0

0.1

0.2

Γ(X -> J/ψ + 2π),  MeV

Γ(X -> J/ψ + γ),  MeV

Figure 13: The dependence of the decay widthsΓ(Xl → J/ψ + γ) andΓ(Xl → J/ψ + 2π) on the size
parameterΛX.

Proceeding in a such way one will get the dependence of the decay widthsΓ(Xl → J/ψ + γ) and
Γ(Xl → J/ψ +2π) plotted in Fig. 13.

Note that the radiative decay width forXh = −Xusinθ +Xd cosθ is almost an order of mag-
nitude less than forXl = Xucosθ +Xd sinθ . If one takesΛX ∈ (3,4) GeV with the middle point
ΛX = 3.5 GeV then the ratio of the widths is equal to

Γ(Xl → J/ψ + γ)
Γ(Xl → J/ψ +2π)

∣∣∣
theor

= 0.15±0.03 (5.13)

which fits very well the experimental data from the BELLE collaboration writtendown in their
Eq. (5.14).

Γ(X → J/ψ + γ)
Γ(X → J/ψ +2π)

=





0.14±0.05 BELLE [41]

0.22±0.06 BABAR [42]
(5.14)

The last topic which we would like to discuss is the impact of the intermediate X-resonance
on the value of theJ/ψ-dissociation cross section, see [43]-[44]. The relevant s-channel diagram
is shown in Fig. 14.

We takeΓX = 1 MeV in the Breit-Wigner propagator and setΛX = 3.5 GeV when calculating
the matrix elements. We plot the behavior of the relevant cross sections in Fig.15. One can see that
in the case of charged D-mesons (left panel in Fig. 15) the maximum value ofthe cross section is
about 0.32 mb atE = 3.88 GeV. This result should be compared with the result of the cross section
σ(J/ψ + π → D+ D̄∗) ≈ 0.9 mb atE = 4.0 GeV, see, [45] and the result of the cross section
σ(J/ψ +ρ → D+ D̄∗)≈ 2.9 mb atE = 3.9 GeV, see, [43]. Thus the X-resonance gives a sizable
contribution to theJ/ψ-dissociation cross section. It would be interesting to do a complete analysis
of the J/ψ dissociation cross section in view of our new results on the s-channel contribution of
the X(3872) tetraquark state.
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Figure 14: Diagram describing the X-resonance contribution to theJ/ψ-dissociation process.

3.88 3.9 3.92 3.94
E (GeV)

0

0.1
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ρ-meson
ω-meson

Charged D-mesons

3.88 3.9 3.92 3.94
E (GeV)

0

10

20
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40
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(m
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ρ-meson
ω-meson

Neutral D-mesons

Figure 15: The cross sections of the processesJ/ψ + v0 → X → D+D∗. Charged D-mesons– left panel,
neutral D-mesons–right panel.
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6. Summary

• We have presented a refined covariant quark model which includes infrared confinement of
quarks.

• We have calculated the transition form factors of the heavyBs−meson to light pseudoscalar
and vector mesons, which are needed as ingredients for the calculation ofthe semileptonic,
nonleptonic, and rare decays. Our form factor results hold in the full kinematical range of
momentum transfer.

• We have made use of the calculated form factors to calculate the nonleptonic decaysBs →
DsD̄s, ... andBs → J/ψφ , which have been widely discussed recently in the context ofBs−
B̄s–mixing and CP violation.

• We have applied our approach to baryon physics by using the same valuesof the constituent
quark masses and infrared cutoff as in meson sector.

• We have calculated the nucleon magnetic moments and charge radii and also electromagnetic
form factors at low energies.

• The properties of theX(3872) as a tetraquark have been studied in the framework of a co-
variant quark model with infrared confinement.

• The matrix elements of the off-shell transitionsX → J/ψ + ρ(ω) andX → D+ D̄∗ were
calculated.

• The obtained results were then used to evaluate the widths of the experimentallyobserved
decaysX → J/ψ +2π(3π) andX → D0+ D̄0+π0.

• The possible impact of theX(3872) on theJ/ψ-dissociation process was disscussed.

• We have calculated the matrix element of the transitionX → γ + J/ψ and have shown its
gauge invariance. We have evaluated theX → γ + J/ψ decay width and the polarization of
theJ/ψ in the decay.

• The comparison with available experimental data allows one to conclude that theX(3872)
can be a tetraquark state.
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