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1. Introduction

Nowadays, many interesting and novel behavior in particle physics is expected in the infrared
(IR) region at low energies below Q ∼ 1 GeV. Therefore, the study of QCD behavior at large
distances remains an active field of research. A correct description of hadron dynamics in the IR
domain is required to understand a number of phenomena such as quark confinement, hadronization
of quark-gluon matter and the QCD running coupling, etc. Hereby, the conventional perturbation
theory cannot be effectively used in the IR region (see, e.g., [1, 2, 3]).

One of the fundamental parameters of nature, the QCD effective coupling αs and its behavior
in the IR region are the subject of intensive studies in both theoretical and experimental particle
physics. As is known, QCD predicts a dependence of the physical coupling g under changes of
distance ∼ 1/Q. This dependence αs(Q)

.
= g2/(4π) is described theoretically by the renormal-

ization group equations and determined experimentally at relatively high energies [4, 5]. Recent
developments on this way were summarized in a number of articles (e.g., [6, 7, 8]). There exists
a phenomenological indication in favor of a smooth transition from short distance to long distance
physics [9].

Many quantities in particle physics are affected by the IR behavior of the coupling in different
amounts. Nevertheless, the long-distance behavior of αs is not well defined, it needs to be more
specified [10, 11, 12] and correct description of QCD effective coupling in the IR regime remains
one of the actual problems in particle physics.

2. Model

The dependence of αs on mass scale M in the low-energy region may be determined by ex-
ploiting the hadron spectrum [13]. In doing so, we define the meson masses by solving the master
equation (which is similar to the ladder Bethe-Salpeter equation) for two-quark bound states within
a relativistic field model [14].

For the spectra of two-quark bound states we develop a relativistic quantum-field model based
on IR confinement and consider the model Lagrangian:

L =−1
4
(
FA

µν −g f ABCA B
µ A C

ν
)2

+
(

q̄a
f [γα∂ α −m f ]

ab qb
f

)
+g
(

q̄a
f
[
Γα

CA C
α
]ab

qb
f

)
, (2.1)

where A C
α is the gluon field, qa

f - a quark field of flavor f , FA
µν = ∂ µA A

ν −∂ νA A
µ and Γα

C = iγαtC.
Recent theoretical results predict an IR-finite behavior of the gluon propagator [16, 17, 18, 19,

20]. We consider a IR-confined gluon propagator in Feynman gauge as follows [15]:

D̃AB
µν(p) = δ ABδµν

1/Λ2∫
0

ds e−sp2
= δ ABδµν

1− exp
(
−p2/Λ2

)
p2 . (2.2)

Here, an IR parametrization is hidden in the confinement scale Λ. The gluon propagator exhibits
an explicit IR-finite behavior D̃(0)∼ 1/Λ2. Deconfinement appears as Λ → 0.

Similarly, the IR-confined quark propagator reads:

S̃ab
m (p̂) = δ ab ip̂+m f

Λ2

1/Λ2∫
0

dt e−t(p2+m2
f ) = δ ab ip̂+m f

p2 +m2
f

{
1− exp

(
−

p2 +m2
f

Λ2

)}
. (2.3)
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Within the model the quark and gluon propagators S̃(p̂) and D̃(p) are entire analytic functions
in the Euclidean space. The model parameters are the IR confinement scale Λ and the constituent
quark masses m f={mud ,ms,mc,mb}.

The leading-order contribution to the (qq̄) bound states is determined by partition function
[14]:

Zqq̄ =
∫ ∫

D q̄Dqexp
{
−(q̄S−1q)+

g2

2
⟨(q̄ΓA q)(q̄ΓA q)⟩D

}
, (2.4)

⟨(•)⟩D
.
=
∫

DA e−
1
2 (A D−1A )(•) .

1. First, we allocate the one-gluon exchange between colored biquark currents and isolate the
color-singlet combinations.

L2 =
g2

2 ∑
f1 f2

∫ ∫
dx1dx2

(
q̄ f1(x1)iγµtAq f1(x1)

)
DAB

µν(x1,x2)
(
q̄ f2(x2)iγνtBq f2(x2)

)
. (2.5)

2. Then, perform a Fierz transformation

(iγµ)δ µν(iγν) = ∑
J

CJ ·OJ OJ , CJ = {1,1,
1
2
,−1

2
,0} , OJ = {I, iγ5, iγµ ,γ5γµ , i

[γµ ,γν ]

2
} .

to extract different currents with J = {S,P,V,A,T}.

3. By introducing a system of orthonormalized functions {UQ(x)}, where Q = {nr, l,µ} are
quantum numbers, we diagonalize the one-gluon exchange term on this system.

4. Then, we involve a Gaussian path-integral representation for the exponentials by introducing
new auxiliary meson fields BN with N = {Q,J, f1, f2}. This allows us to take explicit path
integration over quark variables.

5. We introduce a Hadronization Ansatz and do identify BN (x) with meson fields carrying
quantum numbers N .

6. All quadratic field configurations (∼ B2
N ) in the ’kinetic’ term should be isolated and we

rewrite the partition function totally in terms of meson field variables as follows [14]:

Zqq̄ → Z =
∫

∏
N

DBN exp

{
−1

2 ∑
N N ′

(BN [δN N ′
+αsλN N ′ ]BN ′)−Wres[BN ]

}
,(2.6)

where the residual part Wres[BN ]∼ 0(B3
N ) describes interaction between mesons.

7. The Fourier transform of the leading-order term of the polarization operator reads

λJJ′(p,x,y) =
16π

9

√
CJ CJ′D(x)D(y)

∫ d4k
(2π)4 e−ik(x−y)Tr

[
OJ S̃m1

(
k̂+ξ1 p̂

)
OJ′ S̃m2

(
k̂−ξ2 p̂

)]
,

where traces are taken on color and spinor indices.
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8. We diagonalize the polarization kernel on the orthonormal basis {UN }∫ ∫
dxdyUN (x)λJJ′(p,x,y)UN ′(y) = δN N ′

λN (−p2)

that is equivalent to the solution of the corresponding ladder BSE.

9. In relativistic quantum-field theory a stable bound state of n massive particles shows up as a
pole in the S matrix with a center of mass energy. Accordingly, the meson masses may be
derived from the equation [21]:

1+αs ·λN (M2
N ) = 0 , −p2 = M2

N . (2.7)

3. Meson Spectrum

The dependence of meson masses on αs and model parameters is defined by Eq. (2.7). Note,
the kernel function λN is a real and finite, it allows us to derive both analytic and numeric solutions.

3.1 Analytic Results

By deriving Eq. (2.7), we reveal an asymptotical Regge-type behavior of meson squared
masses:

M2
J ≈ M2

0 + J · const , for J > 3.

Also, one can easily find that for the same quark content a vector meson is heavier than its
pseudoscalar counterpart: MV > MP because CV <CP.

3.2 Numerical Estimates

The polarization kernel λN is natively obtained real and symmetric that allows us to find a
simple variational solution to this problem.

Further we exploit Eq. (2.7) in different ways, by solving either for αs at given masses, or
for MJ at known values of αs. We adjust the model parameters by fitting experimental data for
different values of confinement scale.

Then, we derive meson mass formula and adjust the model parameters by fitting heavy meson
masses (M ≥ 2 GeV). Hereby, we obtain αs from newest experimental data appeared in PDG2010
edition.

As a particular case, we choose Λ = 220 MeV and fix a set of model parameters as follows:

Λ = 220 MeV , mud = 247.2 MeV ,

ms = 432.5 MeV , mc = 1544.5 MeV , mb = 4740.9 MeV . (3.1)

As an application, we also calculate some intermediate and heavy meson masses (1 < M < 9.5
GeV). Our estimates of meson masses are shown in Table 1. The relative error of our estimate does
not exceed 2.5 percent in a wide range of mass.

4
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JPC = 0−+ MP JPC = 1−− MV

D(1870) 1892 ρ(770) 771
Ds(1970) 1998 K∗(892) 893
ηc(2980) 3042 D∗(2010) 1961
B(5279) 5117 D∗

s (2112) 2079
Bs(5370) 5232 J/Ψ(3097) 3097
Bc(6286) 6238 B∗(5325) 5168
ηb(9389) 9384 ϒ(9460) 9461

Table 1. Estimated masses M of conventional mesons (in MeV) at confinement scale Λ= 220 MeV.

4. QCD Running Coupling

We consider the meson mass M as an appropriate energy-scale parameter for coupling αs(M).
Having adjusted model parameters, we estimate αs(M) in the low-energy domain by exploiting

meson masses below ∼ 1 GeV [13]. Then, we perform global evaluation of αs(M) at the mass scale
of conventional mesons (shown in Table 1) by using formula

αs(MJ) =−1/λJ(MJ,Λ,m1,m2)

and plot the resulting curve at Λ = 220 MeV in Fig. 1 in comparison with recent low- and high-
energy data of αs(Q) [22].
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Fig. 1. Our estimate of αs(M) at the confinement scale value Λ = 220 MeV (left panel) compared
with αs(Q) defined in low- and high-energy experiments (for details see in [6, 22]).
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5. IR-fixed Point of the QCD Running Coupling

The possibility that the QCD coupling constant features an IR-finite behavior has been exten-
sively studied in recent years (e.g., [23, 24, 25, 21]).

By deriving Eq. (2.7) for M = 0 and m1 = m2 = 0 we reveal a IR-fixed point

α0
s =αs(0)=

3π
16 ln(2)

≈ 0.8498 ⇒ α0
s /π =0.2705 . (5.1)

We conclude that our result in Eq.(5.1) is in a reasonable agreement with often quoted esti-
mates 

⟨
α0

s /π
⟩

1GeV ≃ 0.2 [9] ,
α0

s /π ≃ 0.19−0.25 [26] ,
α0

s /π ≃ 0.265 [27] ,
α0

s /π ≃ 0.26 [28]

(5.2)

and phenomenological evidences [22, 29]. The obtained IR-fixed value of the coupling constant is
moderate.

To conclude, we demonstrate that global properties of the low-energy phenomena such as QCD
running coupling and conventional meson spectrum may be explained reasonably in the framework
of a simple relativistic quantum-field model of quark-gluon interaction based on infrared confine-
ment.

We have demonstrated that the behavior of the QCD running coupling in the low-energy region
(below 1 GeV) may be explained reasonably by using the meson data. Despite its model origin, the
approximations used, and questions about the very definition of the coupling in the IR region, our
approach exhibits a new, independent, and specific IR-finite behavior of QCD coupling. Besides,
the model is able to address simultaneously different sections of the low-energy particle physics.
Consideration can be extended to other problems such as exotic mesons, mixed and multiquark
states, glueballs, baryons and hadronic decay processes.
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