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1. Introduction

The structure issue of the lowest lying nucleon resonanceN(1440) with JP = 1
2
+

(the Roper
resonanceP11 or simply R) has been a long standing problem of hadron physics. The simplest
description of the Roper consists of the three-quark(3q) configurationsp2[3]X, i.e. the first (2S)
radial excitation of the nucleon ground states3[3]X, but it fails to explain either the large decay
width ΓR ≃ 300 MeV or the branching ratios for theπN (55-75%) andσN (5-20%) decay chan-
nels [1, 2]. Evaluation of these values in the framework of the CQM is often based on the elemen-
tary emission model (EEM) with single-particle quark-meson (or quark-gamma) couplingsqqπ,
qqσ , qqγ, etc.. The calculation of decay widths (or of the electroproduction cross section at small
virtuality of the photon withQ2 ≃0) results in anomalous small values. These underestimates can
especially be traced to the strict requirement of orthogonality for the ground (0S) and excited state
(2S) radial wave functions of theN- andR states belonging to the quark configurations with the
same spin-isospin (S= 1/2, T = 1/2) and symmetry ([3]ST[3]X) quantum numbers. To overcome
this discrepancy it is suggested that either the Roper is not an ordinary 3q state or the "true" transi-
tion operators have a more complicated form than the single-particle operators used in calculations.
Recently the coupled channel EBAC-DCC approach successfully explained low P11(1440) mass
as a result of a substantial shift of its bare quark core mass caused by meson-baryon dressing [3]

On the experimental side there has been noticeable progress in the experimental study of the
Roper resonance in the last decade. CLAS data on unpolarized cross sections for major meson
electroproduction channels Nπ and Nππ, complemented by the data on beam/beam-target asym-
metries for Nπ electroproduction [4, 5] enhanced considerably our capabilities for extraction of
P11(1440) electrocouplings in a wide range of photon virtualitiesQ2 < 5.0GeV2. The Roper res-
onance has also been studied a combined analysis of pion- and photo-induced reactions made by
CB-ELSA and the A2-TAPS Collaborations [2]. These recent data present new possibilities for the
study of the lightest baryon resonances.

Several models for the description of the Roper resonance electroexcitation were proposed
during the last three decade (e.g., see the review [6]). Now model predictions can be compared with
the new high-quality photo- and electroproduction data [2, 4, 5], and updated versions [7, 8, 9] of
the most realistic models give a good description of the data at intermediate values of 1.5. Q2 .

4 GeV2. However, in the "soft" region, i.e. at low values ofQ2 (0≤ Q2 .1 - 1.5 GeV2), the
data differ qualitatively from the theoretical predictions: the experimental helicity amplitudeA1/2

changes sign atQ2 ≈0.5 GeV2 and it is large and negative at the photon pointQ2 =0. Theoretical
predictions forA1/2 are large and positive atQ2 ≈0.5 GeV2 and quickly go to a small negative (or
zero) value at the photon point.

For pion electroproduction in the resonance regionW ≃ mR the behavior of the transverse
helicity amplitudeA1/2 near the photon pointQ2 &0 is most sensitive to the "soft" component of
the resonance state, i.e. to the possible contribution of the meson cloud. Electroproduction am-
plitudes in this kinematical region are successfully analyzed in terms of the dynamical coupled
channel model [10, 11], which is used at the Excited Baryon Analysis Center (EBAC) at JLab.
The detailed description of the low-Q2 CLAS pπ+π− data [12] was obtained in Ref. [5] on the
basis of JLab-Moscow (JM) model [13, 14] that incorporates all mechanisms seen in nine indepen-
dent differential cross sections for the first time measured with the CLAS detector, and describes
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Figure 1: Diagrams of (a) “soft” (non-local) and (b) “hard” (local) coupling of vector mesons to the nucleon
quark core.

Nππ electroproduction amplitudes as a superpositon of six isobar channels:π−∆++, π+∆0, ρp,
π+D13(1520),π+F15(1685),π−P33++(1620), and direct 2π production mechanisms, when the
final π+π−p state is created without formation of unstable hadrons in the intermediate states. The
contribution of the meson (pion) cloud to the Roper resonance mass was recently calculated in
Refs. [15, 16].

As a result, there are essentially two comprehensive theoretical approaches to the Roper elec-
troproduction on the market. One of them (the coupled channel model of themeson cloud [5, 10,
11]) is only successful in the soft region 0≤ Q2 .1 GeV2 and the other one (the light front (LF)
three-quark model [7, 17] or the covariant quark spectator model [8]) is compatible with data in the
hard region 1.5. Q2 .4 GeV2. Theoretical analyses of the data on P11(1440) electrocouplings,
carried out within the framework of quark models [18, 8, 9] and the EBAC-DCC coupled chan-
nel approach [11, 12] strongly suggest a combined contribution to this resonance structure from
a core of three constituent quarks in the first radial excitation and meson-baryon dressing. The
contribution of meson-baryon dressing is maximal atQ2<1 GeV2. It may be well responsible for
observed in this area ofQ2 difference between quark model expectations and the data [13, 14]. As
Q2 increases, the contribution of meson-baryon dressing becomes smaller, and atQ2 > 1.5 GeV2

the data [13, 14] are consistent with a major contribution from a quark core.

Approaches which pretend to cover both regions ofQ2 were also suggested (see, e.g. Refs. [19]
and [9]). In Ref. [19] a 3q+ q̄qapproach was suggested using the3P0 model [20] and vector meson
dominance (VMD) in combination with the EEM. In Ref. [9] a generalization of the Cloudy Bag
Model (CBM) was used for the case of the open inelastic channelsπ∆ andσN in combination
with a phenomenological strong background interaction. In such combinedapproaches two types
of electromagnetic transition operators are used, the operator designed for the softQ2 region and
one for hard values ofQ2. However, in the transition amplitude they are summed for any value of
Q2. For example, in the generalized3P0+EEM approach [19] the transition operator includes the
sum of two vertices, schematically sketched in Figs. 1a and b.

In our recent work [21] we follow a more physical concept (see, e.g.,Ref. [22] where the con-
stituent quark and parton approaches to theγqq vertex are discussed in the context of the nucleon
electromagnetic form factors). We can consider that the diagram in Fig. 1arepresents the unknown
large-distance physics described by a phenomenological model (the3P0 model in our case), which
is adjusted to low-energy data (i.e. meson-nucleon coupling constantsπNN, ρNN, magnetic mo-
ments and decay widths). In the hardQ2-region these contributions become less important and an
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adequate description of the electromagnetic transition will be given by the diagram in Fig. 1b. In
this case the unknown short-range physics is encoded by adjusted parameters of a parton model. In
the region of moderate values ofQ2 (1.5. Q2 .4 GeV2) we can consider the constituent quarks as
partons and corresponding unknown short-range physics can be included in a few constituent quark
parameters (such as quark form factors given by the intermediate vectormesons in the VMD model
and scale parameters of quark configurations in the baryons). In this case it is not necessary to sum
the contributions of the two diagrams in Fig. 1. Instead it would be desirable to use some mecha-
nism for a smooth transition from one regime to the other. In our opinion such amechanism can be
described in general by a smooth transition from a typical hadron radiusbV ≈0.5 fm of the vector
meson in the CQM to a point-like vector mesonbV =0 corresponding to the quark-parton picture
sketched in Fig. 1b. Here we use the approximationbV(Q2) = bV(0)e−Q2/χ2

, whereχ ≃ 1− 2
GeV corresponds to the lowest characteristic value ofQ2 where the parton model phenomenology
in deep inelasticepscattering sets in.

Another important issue related to the Roper resonance is a possible combined structure of this
state which implies a virtual hadron-hadron component (e.g.σN or/andπ∆) [23] in addition to the
radially excited three-quark structure. Here we consider an admixture ofthe hadronic molecular
stateN+σ in an effective description of such a component. We also consider to whatdegree such
a combined structure for the Roper is compatible with the new high-quality data ofJLab.

2. Composit structure of the Roper resonance

We consider the Roper resonance(R) as a superposition of the radially excited three-quark
configuration 3q∗ and the hadron molecule componentN+σ as:

|R〉 = cosθ |3q∗〉+sinθ |N+σ〉 , (2.1)

whereθ is the mixing angle between the 3q∗ and the hadronic component. In a first step we simplify
the model by reducing it to two independent (decoupled) systems,R1 = 3q∗ and R2 = N + σ ,
and do not consider the full coupled channel problem. Moreover, we consider the dynamics of
the R1 component in the framework of the nonrelativistic3P0 model (see, e.g. Refs. [20, 24]),
while the dynamics of theR2 component is considered in the framework of the hadronic molecular
approach [25] which is manifestly Lorentz invariant.

The effective interaction term of the3P0 model [24, 26] is set up as

Heff
q = gq

∫

d3xψ̄qψq , gq = 2mqγ , (2.2)

whereγ is dimensionless constant. Apart from some drawbacks, the3P0 model [24] is a good
phenomenological method for the evaluation of hadron transitions [27, 28]on the basis of the
quark model starting from Eq. (2.2) with a single strength parameterγ. The interaction term (2.2)
gives rise to Feynman amplitudes for the ¯qq-pair creation (annihilation)

(2π)3δ (3)(p4 +p5)iM
eff
f i = 〈q, p4,µ4|〈q̄, p5,µ5| i

∫

d3xL eff
q (x)|0〉, (2.3)

which are used here for the calculation of meson-baryon couplings. Thequark is labelled by its
3-momentump4 and spin projectionµ4 (for simplicity the isospin projectiont4 and the color are
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omitted), similarly for the antiquark. For the numbering of the quarks see Fig. 1. The corresponding
non-relativistic interaction termVeff

q is defined as

Teff
f i = nr〈q, p4,µ4|nr〈q̄, p5,µ5|Veff

q |0〉 .
=

1
2mq

M
eff
f i , (2.4)

that leads to the expression

Veff
q

.
=

gq

2mq
(−1)1−µ5−t5〈 1

2 −µ5|σσσ ·(p4−p5)| 1
2 µ4〉( 1

2 −t5| 1
2t4)(2π)3δ (3)(p4 +p5), (2.5)

which is the nonrelativistic analogue of the ¯qqpair creation (annihilation) operator.

The description of the hadronicN + σ component of the Roper resonance is based on the
compositeness condition [29, 30]. This condition implies that the renormalizationconstant of the
hadron wave function is set equal to zero or that the hadron exists as a bound state of its constituents
only. In the case of mixed states (as in the present situation where the Roperis a superposition of
the 3q∗ andN + σ components) the amplitude for theN + σ component is defined by the param-
eter sinθ . The compositeness condition was originally applied to the study of the deuteron as a
bound state of proton and neutron [29]. Then it was extensively used inlow–energy hadron phe-
nomenology as the master equation for the treatment of mesons and baryons as bound states of
light and heavy constituent quarks (see e.g. Refs. [30, 31]). By constructing a phenomenological
Lagrangian including the couplings of the bound state to its constituents and ofthe constituents
to other particles in the possible decay channels we calculated hadronic-loop diagrams describing
different decays of the molecular states (see details in [25]).

In the present case theR2 → N+σ coupling is fixed from the compositeness condition

ZR = 1−Σ ′
Nσ (p)| 6p=mR = 0, (2.6)

whereΣNσ (p) is the mass operator of theNσ bound state, calculated with the use of the phe-
nomenological Lagrangian

L
str
R (x) = gRσNR̄(x)

∫

dyΦR(y2)N(x+wσNy)σ(x−wNσ y)+H.c. , (2.7)

wherewi j = mi/(mi + mj). HereΦR(y2) is the correlation function describing the distribution
of Nσ inside R, which depends on the Jacobi coordinatey. Its Fourier transform used in the
calculations has the form of a “modified” Gaussian, i.e. the Gaussian multiplied by a polynomial.
In Euclidean space it may be written as

Φ̃R(−k2
E) =

(

1−λ
k2

E

Λ2
M

)

exp

(

− k2
E

Λ2
M

)

, (2.8)

wherekE is the Euclidean momentum. This present a kind of generalization of the nonrelativistic
quark model wave function to the 4-dimensional case. But the relativistic parametersλ andΛM

should differ from the corresponding nonrelativistic ones. HereΛM is the molecular size parameter
andλ is a free parameter which should be fixed by the orthogonality condition, i.e.〈N|R〉 =0.
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Figure 2: Nσ hadronic-loop diagrams contributing to the Roper electroproduction: the triangle diagram (a),
the bubble diagrams (b) and (c), the pole diagrams (d) and (e).

3. Roper electroproduction

The diagrams which contribute to the Roper resonance electroproduction are shown in Fig. 1
and Fig. 3. The transverse (λ = ±1) and longitudinal (λ = 0) helicity amplitudes for electropro-
duction of the Roper resonance on the proton (Tz = 1/2) are defined by the matrix elements of the
curent forλ = +1 and 0 respectively [32, 17, 8]

A1/2 =

√

2πα
qR

〈R,0,+ 1
2| jµ

q ε(+)
µ |N,−q,− 1

2〉, S1/2 =

√

2πα
qR

〈R,0,+ 1
2| jµ

q ε(0)
µ |N,−q,+ 1

2〉
|q|
Q

(3.1)

whereα = 1/137 and we introduceqR =
m2

R−m2
N

2mR
for the threshold value of the photon 3-momentum

for Roper electroproduction.

A. The contribution of the 3q∗ component to the hadronic current of the Roper electroproduction
is generally given as

Jµ = 〈R| jµ
q |N〉 .

= 〈R,p′,S′z,T
′
z| jµ

q |N,p,Sz,Tz〉. (3.2)

The currentjµ
q is derived by starting from the vector meson absorption amplitudes described in the

3P0 model

Tq(λ )
V+N→R = 3nr〈R,0,S′z,T

′
z|Ve f f

q |N,−q,Sz,Tz〉|V,q,λV , tV〉nr (3.3)

and use of the vector meson dominance (VMD) mechanism in the photon-quarkcoupling:

eε(λ )
µ Jµ =

e
2 ∑

V=ρ,ω

M
q(λ )
V+N→R

gVNN

M2
V

Q2 +M2
V

. (3.4)

The vector meson-nucleon coupling constantgVNN is calculated in the3P0 model. MV is the vec-
tor meson mass approximated asMV = Mρ ≈ Mω ; p, Sz, Tz (p′, S′z, T ′

z) and q, λρ , tρ are the
3-momentum, spin and isospin projections of the nucleon (the Roper) and of the vector meson,
respectively. For convenience we choose the photon momentum asqµ = (q0,0,0, |q|).

For the non-diagonal processN + γ∗ → R in the limit |q|,q0 → qR (i.e. at the photon point)
the matrix element of the transverse componentJµε(λ )

µ , λ = ±1 of the current (3.2) defines ‘the

6
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transition magnetic moment‘:

µ̂N→R = − e
2mN

(I +5τz)

2

√
3

2
exp[−ζ (y0)q2

Rb2/6]

[

2y2
0/3

1+2y2
0/3

−
(

1+y2
0

1+2y2
0/3

)2
q2

Rb2

9

]

, (3.5)

wherey0 = bV/b, ζ (y) =
1+5

6y2

n , n(y) = 1+ 2
3y2. The quantityµ̂N→R gives the value (apart from a

kinematical factor〈σ+〉
√

qR/2) of the transverse helicity amplitudeA1/2 at the photon point.

The first term in the square brackets of the r.h.s. of Eq. (3.5)ZV =
2y2

0/3
1+2y2

0/3
is present because

of the nonlocality of theVqq interaction defined by Eq. (3.3). There the operatorVe f f
q leads to

an insertion of the inner ¯qq wave function of the vector meson into theVqq vertex. The size of
the nonlocal region is defined by the spatial scale of the meson wave function. For a point-like
vector meson (bV =0) the value ofZV reduces to zero, and the matrix element for the transition
N + γ∗T → R reduces to the matrix element of the elementary-emission model (EEM) with a local
Vqq vertex. The EEM matrix element vanishes in the limit|q| →0, as it should because of the
orthogonality of the spatial parts of the wave functions ofN andR.

Such behavior of theA1/2 amplitude near the photon pointQ2 =0 is characteristic of all the
models which start from localγqqorVqqvertices at highQ2 and continue to use such interaction in
the ‘soft‘ region of smallQ2 . 6/b2

V , where the e.-m. interaction is modified by the inner structure
of vector mesons as ¯qq bound states. As a result, in models with a local operator for theγqq (or
Vqq) interaction (see, e.g. the relativistic models [32, 17, 8]) the transverse helicity amplitudeA1/2

vanishes in the limitQ2 →0 [or it approaches a small value which is defined by the second term in
the last line of Eq. (3.5) modified by relativistic corrections].
B. The hadronic Nσ loop diagrams contributing to the Roper electroexcitation are shown in
Fig. 3. TheRNσ vertex is defined by the nonlocal LagrangianLR of Eq. (2.7). For theNNσ
vertex we use a similar nonlocal Lagrangian with the correlation functionΦN(y2)

LN = gNNσ σ(x)
∫

dyΦN(y2)N̄(x+y/2)N(x−y/2), (3.6)

wheregNNσ is theNNσ coupling constant,̃ΦN(−k2
E) = exp

(

− k2
E

Λ2
N

)

is the Fourier transform of

ΦN(y2) in Euclidean space withΛN =0.7 – 1 GeV.
The electromagnetic interaction Lagrangian contains two pieces

L
em
int = L

em(1)
int +L

em(2)
int (3.7)

which are generated after the inclusion of photons. The first termL
em(1)
int is standard and is obtained

by minimal substitution in the free Lagrangian of the proton and charged Roper resonance:

∂ µB→ (∂ µ − ieBAµ)B, (3.8)

whereB stands forp,R+ andeB is the electric charge of the fieldB. The interaction Lagrangian
L

em(1)
int reads

L
em(1)
int (x) = eBB̄(x) 6AB(x). (3.9)

The second electromagnetic interaction termL
em(2)
int is generated when the nonlocal Lagrangians (2.7)

and (3.6) are gauged. The gauging proceeds in a way suggested and extensively used in Refs. [31,

7
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33, 34]. In order to guarantee localU(1) gauge invariance of the strong interaction Lagrangian
one multiplies each charged field in (2.7) and (3.6) with a gauge field exponential e−ieBI(y,x,P). The
exponent contains the term

I(y,x,P) =

y
∫

x

dzµAµ(z) , (3.10)

whereP is the path of integration fromx to y. An expansion of the gauge exponential up to
terms linear inAµ leads toL em(2)

int . The full Lagrangian consistently generates the required ma-
trix element of the electroexcitation amplitude which is linked to coming the hadronic molecular
component of the Roper.

4. Results and comparison with data

In the calculation the helicity amplitudesA1/2 andS1/2 we use the free parameters typical for
the CQM:b = 0.48fm, y0 = bV

b = 0.9, χ2 = 1.5m2
N, bR = 0.9444b. They were only fitted to the

A1/2 JLab data [4, 5] without any additional adjustment to theS1/2 data.
The set of parameters related to the molecular component includes the mixing parameterθ , the

scale parametersΛM, ΛN and the parameterλ entering in the vertex function of the Roper. Further
parameters linked to theσ are the massMσ , the widthΓσ and the strong coupling constantgσNN.
The parametersΛM ≈ ΛN ≈1 GeV are approximately taken at the scale set by the light baryons.
The parameterλ is fixed through the orthogonality condition〈R|N〉= 0 (finally fitted atλ = 2.45).
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Figure 3: Helicity amplitudesA1/2 andS1/2 in comparison to JLab data [4, 5]. Dotted curves — the quark
core excitation amplitudes|3q〉+γ∗ →|3q∗〉 calculated in the framework of the standard ‘3P0+ VMD’ model
with a fixed vector meson radiusbV = y0b. Dashed curves — the same amplitudes calculated in a modified
‘3P0+ VMD’ model with aQ2-dependent scale parametery= y0e−Q2/χ2

for the vector meson radiusbV = yb.
Dashed-dotted curves — helicity amplitudes for the electroexcitation of the hadron moleculeN+σ . Solid
curves — the full calculation ofA1/2 andS1/2 in terms of a combined structureR= cosθ |3q∗〉+sinθ |N+σ〉.
For comparison, the valence quark contribution toA1/2 calculated in Ref. [8] on the basis of a covariant
spectator model is also shown (the dashed-double-dotted curve in the left top panel).

For theσ resonance we take values which are reasonable [1] (a wide range of values is given by
Mσ = (0.4−1.2) GeV,Γσ = (0.5−1) GeV andgσNN ≈5 - 10). Some fine-tuning of these param-
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Figure 4: R→ N+(π +π)I=0 decay process via theσ -meson resonance.

eters to the complete range of data onA1/2 results in the following set of molecular parameters:
ΛM = 1GeV, ΛN = 0.8GeV, Mσ = 0.5±0.05GeV, Γσ = 0.75±0.25GeV, gσNN = 5. The mixing
parameterθ is fixed in the low energy region (0. Q2 .1 GeV2/c2) of A1/2, where the molecular
component is optimized to reproduce the differnece between the 3q contribution and the JLab data.

The calculated helicity amplitudesA1/2 andS1/2 are shown in Figs. 3. We also show separately
the contributions to the amplitude from the quark and the hadron molecule components (dashed and
dashed-dotted curves, respectively). The comparison with the standard 3P0 model calculation with
a fixed value for the vector-meson radiusbV = 0.9b (dotted curves) demonstrates the following: a
smooth transition from the3P0 γRN vertex (Fig. 1a) to the parton-like one (Fig. 1b) using aQ2-
dependent vector meson radiusbV(Q2) →0 leads to considerable improvement of the standard3P0

model results at moderate values ofQ2.
The quark core component of R plays the main role in the electroproduction of the Roper

resonance for thisQ2 region (Q2 &1 – 1.5 GeV2/c2). For small values ofQ2 .1 GeV2, where the
contribution of the meson cloud should also be important, it can be effectivelytaken into account
in the framework of3P0- and VMD models. However, such a model overestimates the transverse
amplitudeA1/2 in the region 0.5. Q2 .1 GeV2 (the dashed line in Fig. 3). The description of the
JLab data [4, 5] onA1/2 can be considerably improved if one takes a combined structure for the
Roper in the form of|R〉= cosθ |3q∗〉+sinθ |N+σ〉. The adjustable parameterθ fitted to the JLab
data in this region is cosθ =0.8 indicating an admixture ofNσ component of about 36%.

When the weight ofN + σ component in the Roper resonance in terms of∼ sin2 θ is fixed,
the Roper decay width for the transitionN+(ππ)I=0

Swavecan be calculated. The assumption that the
quark part of the Roper just gives a very small contribution through a virtual transitionR→ N+σ
is justified in our quark model. Then the transition is described as the virtual decay of the molecular
part toN+σ followed by theσ → ππ decay. The diagram for such a mechanism is shown in Fig. 4.
The probability|M f i |2 for the transition process of Fig. 4 contains the Breit-Wigner representation
for the intermediateσ -meson state with

|M f i |2 = g2
RσN g2

σππΦ̃2
R(k2)

(mN +mR)2−sππ

(m2
σ −sππ)2 +m2

σ Γ2
σ (sππ)

, Γσ (x) = Γσ
mσ√

x

√

x−4m2
π

√

m2
σ −4m2

π
, (4.1)

wherek = pR−ωNσ pN, x = sππ ≡ k2
σ and the coupling constantgσππ is deduced from the two-

pion decay width of theσ with g2
σππ = 32π

3 Γσ mσ

(

1− 4m2
π

m2
σ

)−1/2
. The coupling constantgRσN of the

hadron-molecular vertex is defined by the compositeness condition (2.6). The numerical value for
ΓR→Nσ with gRσN = 6.39 [fixed by the compositeness condition (2.6)] and a molecular admixture
in the Roper of sinθ ≃ 0.6 is ΓR→Nσ(ππ) = (19.0 − 26.7) MeV, where the lower and upper limits
correspond to a variation of theσ decay widthΓσ from 0.5 to 1 GeV, respectively (the variation
of the σ -meson massMσ = 500±50MeV can only change the result within 10%). This should
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be compared to the PDG [1] valueΓR→Nσ(ππ) ≈ (0.05 – 0.1)Γtot
R (≈ 15− 30MeV) or the recent

data [2]ΓR→Nσ = 71±17 MeV. It is clear that the strong Roper decay can serve as a constraint on
Γσ , however present results forΓR→Nσ(ππ) are compatible with all values ofΓσ .

The pion decay width calculated for the quark part of the Roper resonance in the framework
of our approach (Γq

R→πN ≃36 MeV) is not as small as in the case of EEM evaluations (ΓEEM
R→πN ≃4

MeV) but it is still several times smaller than the PDG value ofΓR→N+π ≈ (0.55 – 0.75)Γtot
R . It is

clear that considerable corrections toΓq
R→πN can come from the pion cloud contribution which is

neglected here.

5. Conclusions

We suggested a two-component model of the lightest nucleon resonanceR= N1/2+(1440) as
a combined state of the quark configurationsp2[3]X and the hadron molecule componentN + σ .
This approach allows to describe with reasonable accuracy the recent CLAS electroproduction
data [4, 5] at low- and moderate values ofQ2 with 0≤ Q2 .1.5 – 2 GeV2. In the model the
R→ N+(ππ)I=0

Swavetransition process is interpreted as the decay of a virtualσ meson in theN+σ
component. The calculated decay widthΓR→Nσ(ππ) correlates well with the PDG value [1] and the
recent CB-ELSA and A2-TAPS data [2].

We tried to show that the description of transition amplitudes in terms of parton-likemodels,
which are very good at highQ2, can be naturally transformed into a description in terms of the ‘soft‘
vector meson cloud. This smooth transition is achieved by ’switching on’ a non-zero radius of the
intermediate vector meson. The vector mesonV of finite size generates a non-localVqqinteraction.
This weakens the effect of the orthogonality of the spatialRandN wave functions in the transition
matrix elementN+ γ∗T → R, and the amplitudeA1/2. Resulting theoretical values, which match the
data, are contrary to the standard predictions of LF-models, which lead to non-zero and (negative)
large values at the photon point.

Further we plan to develop a relativistic version of the suggested electroexcitation mechanism.
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