Search for the Standard Model Higgs boson in the $H \rightarrow \tau^{+} \tau^{-}$decay mode with the ATLAS detector

Swagato Banerjee *i

Affiliation: Department of Physics, University of Wisconsin, Madison, WI 53706, USA.
E-mail: Swagato.Banerjee@cern.ch

A search for the Standard Model Higgs boson decaying into a pair of τ leptons is reported. The analysis is based on a data sample of proton-proton collisions collected by the ATLAS experiment at the LHC and corresponding to an integrated luminosity of $4.7 \mathrm{fb}^{-1}$. No significant excess over the expected background is observed in the Higgs boson mass range of $100-150 \mathrm{GeV}$. The observed (expected) upper limits on the cross section times the branching ratio for $H \rightarrow \tau^{+} \tau^{-}$are found to be between 2.9 (3.4) and 11.7 (8.2) times the Standard Model prediction for this mass range.

Melbourne, Australia

[^0]
1. Introduction

The decay of a Standard Model (SM) Higgs boson (H) into a pair of τ leptons provides direct probe into the Yukawa coupling of fermions, which gives mass to all the quarks and leptons. In the region of interest around 125 GeV [1], $H \rightarrow \tau^{+} \tau^{-}$has one of the largest branching ratios [2], as shown in Fig. 1. In order of decreasing cross-sections, three mechanisms contribute to Higgs production: gluon-gluon fusion (ggF), vector-boson fusion (VBF) and associated vector boson (VH) production [2]. However, the experimental signature is cleaner for VBF (VH) processes, due to the presence of two additional jets in the opposite (same) hemisphere.

Figure 1: Cross-section times branching ratio (left) and different components of production cross-section (right) of a SM Higgs boson produced in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ [2].

2. Analysis

In terms of the τ decay products, the search for $\mathrm{SM} H \rightarrow \tau^{+} \tau^{-}$decays using data collected in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ by the ATLAS experiment [3] is split into 3 channels: $H \rightarrow \tau_{\text {had }} \tau_{\text {had }}$, $H \rightarrow \tau_{\text {lep }} \tau_{\text {had }}$ and $H \rightarrow \tau_{\text {lep }} \tau_{\text {lep }}$. In the $H \rightarrow \tau_{\text {had }} \tau_{\text {had }}$ channel, there is only a 1-jet category. In the $H \rightarrow \tau_{\text {lep }} \tau_{\text {had }}$ channel, there are seven categories: electron and muon flavors separately for both 0 - and 1 -jet categories, and electron and muon flavors combined in the 2 -jet VBF category. The 0 -jet category is further split into low and high regions depending upon whether the missing transverse energy ($\mathrm{E}_{\mathrm{T}}^{\text {miss }}$) is less than or greater than 20 GeV . In the $H \rightarrow \tau_{\text {lep }} \tau_{\text {lep }}$ channel, there are four categories: 0 -jet, 1 -jet, 2 -jet VBF and 2 -jet $V H$. Thus, a total of 12 categories are considered in the analysis. The 0 -jet category in $H \rightarrow \tau_{\text {lep }} \tau_{\text {lep }}$ channel uses effective mass defined as $m_{\tau \tau}^{e f f}=$ $\left(p_{\ell^{+}}+p_{\ell^{-}}+\mathrm{E}_{\mathrm{T}}^{\text {miss }}\right)^{2}$. In all other categories in $H \rightarrow \tau_{\text {lep }} \tau_{\text {lep }}$ and $H \rightarrow \tau_{\text {had }} \tau_{\text {had }}$ channels, the collinear di-tau mass reconstruction [4] is used. For all categories in $H \rightarrow \tau_{\text {lep }} \tau_{\text {had }}$ channel, di-tau mass reconstructed with missing mass constraint (MMC) [5] is used. These distributions for the $H \rightarrow$ $\tau_{\text {had }} \tau_{\text {had }}, H \rightarrow \tau_{\text {lep }} \tau_{\text {had }}$ and $H \rightarrow \tau_{\text {lep }} \tau_{\text {lep }}$ channels are shown in Figs. 2, 3, and 4, respectively.

Figure 2: Reconstructed $m_{\tau \tau}$ of the selected events in the $H \rightarrow \tau_{\text {had }} \tau_{\text {had }}$ channel. Expectations from the Higgs boson signal ($m_{H}=120 \mathrm{GeV}$) and from backgrounds are given. For illustration only, the signal contribution has been scaled by a factor given in the legend.

In terms of the parameter of interest, the signal strength μ defined as the ratio of the measured cross-section normalized to the Standard Model cross-section times the branching ratio for $H \rightarrow$ $\tau^{+} \tau^{-}$decays, a binned likelihood function $\mathscr{L}(\mu, \theta)$ is defined from the number of events $\left(N_{j}\right)$ in each bin of the $\tau \tau$ mass distributions per category per channel as:

$$
\begin{equation*}
\mathscr{L}(\mu, \theta)=\prod_{\text {channel }} \prod_{\text {category }}\left[\prod_{\text {bin } j} \operatorname{Poisson}\left(N_{j} \mid \mu \cdot s_{j}+b_{j}\right) \prod_{\theta} \operatorname{Gaussian}(t \mid \theta, 1)\right] . \tag{2.1}
\end{equation*}
$$

The value $\mu=0(\mu=1)$ corresponds to the absence (presence) of a Higgs boson signal with the SM production cross-section. Signal and background predictions (s_{j} and b_{j}) are parametrized by nuisance parameters θ describing systematic uncertainties, which are constrained by auxiliary measurements t of various scale factors and dedicated calibration constants obtained from control regions in the data.

Following the modified frequentist CL_{s} method [6], the compatibility with respect to the signal hypothesis is tested using asymptotic approximations [7]. The results are presented in Fig. 5.

3. Results and Summary

A search for a Higgs boson decaying in the $H \rightarrow \tau \tau$ channel has been performed with the ATLAS detector [3]. It uses the full 2011 data sample of $4.7 \mathrm{fb}^{-1}$ collected at a centre-of-mass energy of 7 TeV . The $H \rightarrow \tau_{\text {had }} \tau_{\text {had }}, H \rightarrow \tau_{\text {lep }} \tau_{\text {had }}$ and $H \rightarrow \tau_{\text {lep }} \tau_{\text {lep }}$ decays are considered in this search. No significant excess is observed in the mass range of $100-150 \mathrm{GeV}$. The observed (expected) upper limits on the cross section times the branching ratio of $H \rightarrow \tau \tau$ are between 2.9 (3.4) and 11.7 (8.2) times the SM prediction. These limits are similar to results recently reported by the CMS experiment [8].

Figure 3: MMC mass distributions of the selected events in the $H \rightarrow \tau_{\text {lep }} \tau_{\text {had }}$ channel. The corresponding electron and muon categories for the $H+0$-jet and $H+1$-jet categories are shown combined here, while in the data analysis they are considered separately. The selected events in data are shown together with the predicted Higgs boson signal ($m_{H}=120 \mathrm{GeV}$) stacked above the background contributions. For illustration only, the signal contributions have been scaled by factors given in the legends.

Figure 4: Reconstructed $m_{\tau \tau}$ of the selected events in the $H \rightarrow \tau_{\text {lep }} \tau_{\text {lep }}$ channel for the categories as described in the text. Simulated samples are normalized to an integrated luminosity of $4.7 \mathrm{fb}^{-1}$. Predictions from the Higgs boson signal ($m_{H}=120 \mathrm{GeV}$) and from backgrounds are given. In the case of the $H+0$-jet category $m_{\tau \tau}^{\mathrm{efff}}$ is used. For illustration only, the signal contributions have been scaled by factors given in the legends.

Figure 5: Observed (solid) and expected (dashed) 95% confidence level upper limits for the $H \rightarrow \tau_{\text {lep }} \tau_{\text {lep }}$, $H \rightarrow \tau_{\text {lep }} \tau_{\text {had }}$, and $H \rightarrow \tau_{\text {had }} \tau_{\text {had }}$ channels independently and for all channels combined.

References

[1] ATLAS Collab., Phys. Lett. B 716 (2012) 1-29. CMS Collab., Phys. Lett. B 716 (2012) 30-61.
[2] LHC Higgs Cross Section Working Group Collab., arXiv:1101.0593.
[3] ATLAS Collab., JHEP 1209 (2012) 070.
[4] R. K. Ellis, I. Hinchliffe, M. Soldate and J. J. van der Bij, Nucl. Phys. B 297 (1988) 221.
[5] A. Elagin, P. Murat, A. Pranko and A. Safonov, Nucl. Instrum. Meth. A 654 (2011) 481.
[6] A.L. Read, J. Phys. G 28 (2002) 2693.
[7] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Eur. Phys. J. C 71 (2011) 1554.
[8] CMS Collab., Phys. Lett. B 713 (2012) 68.

[^0]: *Speaker.
 ${ }^{\dagger}$ on behalf of the ATLAS Collaboration.

