

PoS

Production of the heaviest charged Higgs boson in 3-3-1 models

Fredy Ochoa*, R. Martinez and C. Alvarado

Universidad Nacional De Colombia, Crr. 45 No. 26-85, Bogotá, Colombia E-mail: faochoap@unal.edu.co, remartinezm@unal.edu.co

We study the production cross section of the heaviest hypercharge-two Higgs boson (H_2^{\pm}) predicted by the 3-3-1 model. Taking into account intermediate vector bosons, including a new Z'neutral boson, we calculate the cross section of H_2^{\pm} pair production at CERN-LHC hadron collider. Considering Z'-mass of the order of 1 TeV, we found that the cross sections decreases from 100 fb to 1×10^{-3} fb for the H_2^{\pm} -mass range 200 - 1000 GeV. We also found that for masses below the kinematic threshold (500 GeV), the cross section splits into three branches for H_2^{\pm} -boson, the hipercharge-one H_1^{\pm} -boson, and the H_{2HDM}^{\pm} -boson from a two Higgs doublet model.

36th International Conference on High Energy Physics, July 4-11, 2012 Melbourne, Australia

*Speaker.

1. Introduction

An interesting alternative to extend the SM are the models with gauge symmetry $SU(3)_c \otimes$ $SU(3)_L \otimes U(1)_X$, also called 3-3-1 models, which introduce a family nonuniversal U(1) symmetry [1, 2, 3]. These models have a number of phenomenological advantages. First of all, from the cancellation of chiral anomalies and asymptotic freedom in QCD, the 3-3-1 models can explain why there are three fermion families. Secondly, since the third family is treated under a different representation, the large mass difference between the heaviest quark family and the two lighter ones may be understood. Finally, these models contain a natural Peccei-Quinn symmetry, necessary to solve the strong-CP problem. In particular, these models extend the scalar sector of the SM into three $SU(3)_L$ scalar triplets. After the spontaneous breaking of the gauge symmetry and rotations into mass eigenstates, the model contains 4 massive charged Higgs (H_1^{\pm}, H_2^{\pm}) , one neutral CP-odd Higgs (A^0) , 3 neutral CP-even Higgs (h^0, H_1^0, H_2^0) , and one complex neutral Higgs (H_3^0) bosons. In particular, the charged sector is composed of two types of Higgs bosons: hypercharge-one Higgs bosons H_1^{\pm} which exhibit tree-level couplings with the SM particles [4], and hypercharge-two Higgs H_2^{\pm} bosons which show couplings with the SM matter through mixing with non-SM particles. In this work we study the $H_{1,2}^{\pm}$ -boson production at CERN-LHC in $pp \to H_2^+ H_2^-$ pair production. For comparison purposes, we include the H_{2HDM}^{\pm} -boson production from the two Higgs doublet model.

2. The 331 spectrum

We consider a 3-3-1 model where the electric charge is defined by:

$$Q = T_3 - \frac{1}{\sqrt{3}}T_8 + X, \tag{2.1}$$

with $T_3 = \frac{1}{2}Diag(1, -1, 0)$ and $T_8 = (\frac{1}{2\sqrt{3}})Diag(1, 1, -2)$. In order to avoid chiral anomalies, the model introduces in the fermionic sector the following $(SU(3)_c, SU(3)_L, U(1)_X)$ left- and right-handed representations:

$$\begin{aligned} Q_L^1 &= \begin{pmatrix} U^1 \\ D_1^1 \\ T^1 \end{pmatrix}_L : (3,3,1/3), \begin{cases} U_R^1 : (3^*,1,2/3) \\ D_R^1 : (3^*,1,-1/3) \\ T_R^1 : (3^*,1,2/3) \end{cases} \\ Q_L^{2,3} &= \begin{pmatrix} D^{2,3} \\ U^{2,3} \\ J^{2,3} \end{pmatrix}_L : (3,3^*,0), \begin{cases} D_R^{2,3} : (3^*,1,-1/3) \\ U_R^{2,3} : (3^*,1,2/3) \\ J_R^{2,3} : (3^*,1,-1/3) \end{cases} \\ L_L^{1,2,3} &= \begin{pmatrix} v^{1,2,3} \\ e^{1,2,3} \\ (v^{1,2,3})^c \end{pmatrix}_L : (1,3,-1/3), \begin{cases} e_R^{1,2,3} : (1,1,-1) \\ N_R^{1,2,3} : (1,1,0) \end{cases}, \end{aligned}$$
(2.2)

where U_L^i and D_L^i for i = 1, 2, 3 are three up- and down-type quark components in the flavor basis, while v_L^i and e_L^i are the neutral and charged lepton families. The right-handed sector transforms

as singlets under $SU(3)_L$ with $U(1)_X$ quantum numbers equal to the electric charges. In addition, we see that the model introduces heavy fermions with the following properties: a single flavor quark T^1 with electric charge 2/3, two flavor quarks $J^{2,3}$ with charge -1/3, three neutral Majorana leptons $(v^{1,2,3})_L^c$ and three right-handed Majorana leptons $N_R^{1,2,3}$. On the other hand, the scalar sector introduces one triplet field with VEV $\langle \chi \rangle_0 = v_{\chi}$, which provides the masses to the new heavy fermions, and two triplets with VEVs $\langle \rho \rangle_0 = v_{\rho}$ and $\langle \eta \rangle_0 = v_{\eta}$, which give masses to the SM fermions at the electroweak scale. The $(SU(3)_L, U(1)_X)$ group structure of the scalar fields are:

$$\chi = \begin{pmatrix} \chi_1^0 \\ \chi_2^- \\ \frac{1}{\sqrt{2}} (\upsilon_{\chi} + \xi_{\chi} \pm i\zeta_{\chi}) \end{pmatrix} : (3, -1/3)$$

$$\rho = \begin{pmatrix} \rho_1^+ \\ \frac{1}{\sqrt{2}} (\upsilon_{\rho} + \xi_{\rho} \pm i\zeta_{\rho}) \\ \rho_3^+ \end{pmatrix} : (3, 2/3)$$

$$\eta = \begin{pmatrix} \frac{1}{\sqrt{2}} (\upsilon_{\eta} + \xi_{\eta} \mp i\zeta_{\eta}) \\ \eta_2^- \\ \eta_3^0 \end{pmatrix} : (3, -1/3).$$
(2.3)

In particular, the ρ and η triplets contain hipercharge-one and hypercharge-two fields. After the symmetry breaking, the above weak eigenstates rotate into the following mass eigenstates [5, 6]:

Hipercharge-one Higgs :
$$H_1^{\pm} = -S_{\beta_T} \rho_1^{\pm} + C_{\beta_T} \eta_2^{\pm}$$

Hipercharge-two Higgs : $H_2^{\pm} \approx \rho_3^{\pm}$, (2.4)

where $T_{\beta_T} = v_{\eta}/v_{\rho}$. The photon *A*, neutral weak boson *Z* and a new neutral boson *Z'* are [7]:

$$A_{\mu} = S_{W}W_{\mu}^{3} + C_{W}\left(\frac{1}{\sqrt{3}}T_{W}W_{\mu}^{8} + \sqrt{1 - \frac{1}{3}(T_{W})^{2}}B_{\mu}\right),$$

$$Z_{\mu} = C_{W}W_{\mu}^{3} - S_{W}\left(\frac{1}{\sqrt{3}}T_{W}W_{\mu}^{8} + \sqrt{1 - \frac{1}{3}(T_{W})^{2}}B_{\mu}\right),$$

$$Z'_{\mu} = -\sqrt{1 - \frac{1}{3}(T_{W})^{2}}W_{\mu}^{8} + \frac{1}{\sqrt{3}}T_{W}B_{\mu},$$
(2.5)

where the Weinberg angle is defined as $S_W = \sqrt{3}g_X/\sqrt{3g_L^2 + 4g_X^2}$, with g_L and g_X the coupling constants of the groups $SU(3)_L$ and $U(1)_X$, respectively.

3. The couplings

For the interaction between the SM-quarks q and neutral gauge bosons, we found [7]:

$$\mathscr{L}^{NC} = eQ_q \overline{q} A q + \frac{g_L}{2C_W} \overline{q} \left[\gamma_\mu \left(g_\nu^q - g_a^q \gamma_5 \right) Z^\mu + \gamma_\mu \left(\widetilde{g}_\nu^q - \widetilde{g}_a^q \gamma_5 \right) Z'^\mu \right] q, \tag{3.1}$$

Fermion	$g^q_{ u}$	g^q_a	$\widetilde{g}^q_ u$	\widetilde{g}^q_a
D^1	$-\frac{1}{2}+\frac{2}{3}S_W^2$	$-\frac{1}{2}$	$\frac{-1}{6}\sqrt{3-4S_W^2}$	$\frac{-1}{2\sqrt{3-4S_W^2}}$
D^m	$-\frac{1}{2}+\frac{2}{3}S_W^2$	$-\frac{1}{2}$	$\frac{3-2S_W^2}{6\sqrt{3-4S_W^2}}$	$\frac{1-2S_W^2}{2\sqrt{3-4S_W^2}}$
U^1	$\frac{1}{2} - \frac{4}{3}S_W^2$	$\frac{1}{2}$	$\frac{-3-2S_W^2}{6\sqrt{3-4S_W^2}}$	$\frac{-1+2S_W^2}{2\sqrt{3-4S_W^2}}$
U^m	$\frac{1}{2} - \frac{4}{3}S_W^2$	$\frac{1}{2}$	$\frac{3-8S_W^2}{6\sqrt{3-4S_W^2}}$	$\frac{1}{2\sqrt{3-4S_W^2}}$

Table 1: Vector and Axial couplings of SM quarks and Neutral Gauge Bosons. The index m = 2,3 labels the 3^* multiplets.

Figure 1: Charged Higgs boson pair production in pp collisions

where q is $U = (U^1, U^2, U^3)$ or $D = (D^1, D^2, D^3)$ for up- and down-type quarks, respectively, and Q_q the electric charge in units of the positron charge e. The vector and axial-vector couplings of the Z and Z' bosons are written in table 1 for each SM quark.

On the other hand, from the kinetic term of the Higgs Lagrangian, we obtain the following Higgs-Higgs-Vector interaction associated with the charged Higgs sector::

$$i\mathscr{L}^{HHV} = -ie \left[H_1^+ H_1^- + H_2^+ H_2^- \right] (p-q)^{\mu} A_{\mu} - \frac{ig_L}{2C_W} \left[C_{2W} H_1^+ H_1^- + 2S_W^2 H_2^+ H_2^- \right] (p-q)^{\mu} Z_{\mu} + \frac{ig_X}{2\sqrt{3}T_W} \left[\left(C_{2\beta_T} + T_W^2 \right) H_1^+ H_1^- + 2 \left(1 + T_W^2 \right) H_2^+ H_2^- \right] (p-q)^{\mu} Z_{\mu}'$$
(3.2)

4. Results

For the pair production from figure 1, we use the couplings in (3.2). Figure 2 show the cross section for Higgs boson pair production H_2^{\pm} for $M_Z' = 1$ TeV and pp collisions at CM energy of 14 GeV. For comparison purposes, we include the charged Higgs boson H_1^{\pm} and H_{2HDM}^{\pm} from a two

Figure 2: Pair production cross section of charged Higgs bosons

Higgs doublet model (2HDM). We observe the following behaviour:

• Below the kinematic threshold $M_H < 500$ GeV, the cross sections split into three branches, where $\sigma(H_2) > \sigma(H_1) > \sigma(H_{2HDM})$.

• The H_2^{\pm} bosons exhibit larger contributions than H_1^{\pm} . This splits is due to the different contributions exhibits by the H_1^{\pm} and H_2^{\pm} bosons with the gauge bosons in Eqn. (3.2).

• For 2HDM model, we obtain smaller production ratios due to the fact that in this model the Z' contribution does not exist.

• For $M_H > 500$ GeV, the Z' contribution is suppressed by kinematic conditions ($M'_Z < 2M_H$). Thus, the cross section decreases, as shown.

• The H_1^{\pm} -Z' coupling is β_T -dependent as shown in Eq. (5). For numerical purposes we fix $T_{\beta_T} = 9$.

5. Acknowledgements

This work was supported by Colciencias

References

- [1] F. Pisano and V. Pleitez, $SU(3) \otimes U(1)$ model for electroweak interactions, Phys. Rev. D 46 (1992) 410.
- [2] P.H. Frampton, Chiral dilepton model and the flavor question, Phys. Rev. Lett. 69 (1992) 2889.

- Fredy Ochoa
- [3] R. Foot, H.N. Long and T.A. Tran, $SU(3)_L \otimes U(1)_N$ and $SU(4)_L \otimes U(1)_N$ gauge models with right-handed neutrinos Phys. Rev. D 50 (1994) R34.
- [4] A. Alves, E. Ramirez Barreto, and A.G. Dias, *Production of charged Higgs bosons in a 3-3-1 model at the CERN LHC Phys. Rev. D* 84 (2011) 075013.
- [5] Rodolfo A. Diaz, R. Martinez, and F. Ochoa, *Scalar sector of the* $SU(3)_c \otimes SU(3)_L \otimes U(1)_X model$, *Phys. Rev. D* **72** (2005) 035018.
- [6] Fredy Ochoa and R. Martinez, *Family dependence in* $SU(3)_c \otimes SU(3)_L \otimes U(1)_X$ models, *Phys. Rev. D* **72** (2005) 035010.
- [7] A. Carcamo, R. Martinez, and F. Ochoa, Z and Z' decays with and without FCNC in 331 models, Phys. Rev. D 73 (2006) 035007.