

# ATLAS measurements of WW, WZ, and ZZ production

# **Christopher Hays\***

On behalf of the ATLAS Collaboration Oxford University

E-mail: hays@physics.ox.ac.uk

Using data corresponding to 4.6-4.7 fb<sup>-1</sup> of integrated luminosity from  $\sqrt{s} = 7$  TeV pp collisions at the LHC, the ATLAS Collaboration has measured the production cross section of heavy dibosons (WW, WZ, and ZZ) in the fully leptonic decay channels. A first measurement of ZZ production at  $\sqrt{s} = 8$  TeV with data corresponding to 5.8 fb<sup>-1</sup> of integrated luminosity has also been performed. Differential cross sections are measured for WZ production, and limits are set on anomalous WWZ and  $WW\gamma$  couplings.

36th International Conference on High Energy Physics, July 4-11, 2012 Melbourne, Australia

\*Speaker.

#### 1. Introduction

The study of diboson production at the LHC probes the non-Abelian gauge couplings of the electroweak force at unprecedented energies. The significant cancellation of diagrams with and without such couplings in diboson production enhances sensitivity to these triple-gauge couplings. Furthermore, diboson final states are key signatures of Higgs boson production, and contributed significantly to the excess in the recent observation of a new boson at the LHC [1].

ATLAS [2] has performed a variety of measurements of WW, WZ, and ZZ production in data corresponding to 4.6-4.7 fb<sup>-1</sup> (5.8 fb<sup>-1</sup>) of integrated luminosity in  $\sqrt{s} = 7$  (8) TeV pp collisions. The measurements yield the following results: (1) the inclusive and unfolded differential cross sections in well-defined fiducial regions; (2) the total cross section, extrapolated using a Monte Carlo model; and (3) limits on anomalous triple-gauge couplings, through kinematic fits.

The fiducial cross section  $\sigma_{fid}$  is defined as

$$\sigma_{fid} = \frac{N_{data} - N_{bg}}{\mathcal{L}C_{VV}},\tag{1.1}$$

where  $N_{data}$  is the number of observed events,  $N_{bg}$  is the number of predicted background events,  $\mathcal{L}$  is the integrated luminosity, and  $C_{VV}$  is the ratio of events measured to those produced in the fiducial region. The total cross section  $\sigma(pp \to VV)$  is obtained by dividing by the fiducial acceptance  $A_{VV}$  and the branching ratio of the vector bosons VV to the measured final state particles.

To study gauge-boson self-couplings, the C- and P-conserving WWV terms in the Lagrangian are parameterized as

$$\mathcal{L}_{WWV} = ig_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V_{\nu} W^{\mu\nu}) + i\kappa_V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{i\lambda_V}{m_W^2} W_{\lambda\mu}^{\dagger} W_{\nu}^{\mu} V^{\nu\lambda}, \qquad (1.2)$$

where the Standard Model (SM) parameter values are  $g_1^{V,SM} = \kappa_V^{SM} = 1$  and  $\lambda_V^{SM} = 0$ . Any deviations would break SU(2)×U(1) gauge invariance, making the theory non-renormalizable. To restore gauge invariance at high energy, a suppression factor is frequently introduced:

$$\lambda(s) = \frac{\lambda}{(1 + s/\Lambda^2)^2},\tag{1.3}$$

where  $\Lambda$  is the suppression scale. Similar equations hold for  $\Delta g_1^V = g_1^V - g_1^{V,SM}$  and  $\Delta \kappa_V = \kappa_V - \kappa_V^{SM}$ .

### 2. Measurements of WW production

At next-to-leading order (NLO) in QCD, the inclusive SM  $pp \to WW$  production cross section is  $45.1 \pm 2.8$  pb [3] at  $\sqrt{s} = 7$  TeV. Using data corresponding to 4.7 fb<sup>-1</sup> of integrated luminosity, ATLAS has measured the cross section in the fully leptonic final states  $ev\mu v$ , evev, and  $\mu v\mu v$ , with additional neutrinos possible from decays of a W boson through a tau lepton and neutrino. In the selected fiducial regions, the expected cross sections are  $237.4 \pm 19.4$  fb,  $44.9 \pm 3.7$  fb, and  $38.0 \pm 3.1$  fb, respectively. The fiducial regions are defined as

• 
$$ev\mu v$$
:  $p_{T,Rel}^{v} > 25$  GeV and  $m_{e\mu} > 10$  GeV;

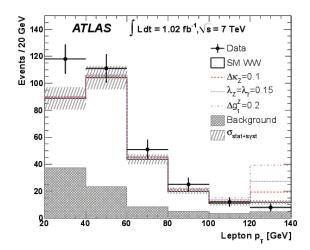
| Decay channel | $N_{data}$ | $N_{bg}$     | $\sigma_{fid}$ (fb)                | $\sigma(pp \to WW) \text{ (pb)}$ |
|---------------|------------|--------------|------------------------------------|----------------------------------|
| evμv          | 1041       | $303 \pm 35$ | $284.9 \pm 12.7 \pm 14.1 \pm 11.1$ | $54.3 \pm 2.4 \pm 4.4 \pm 2.1$   |
| evev          | 196        | $114\pm14$   | $41.4 \pm 6.5 \pm 5.7 \pm 1.6$     | $41.5 \pm 6.5 \pm 7.8 \pm 1.6$   |
| μνμν          | 287        | $113\pm10$   | $48.2 \pm 4.6 \pm 3.8 \pm 1.9$     | $57.3 \pm 5.5 \pm 5.4 \pm 2.2$   |

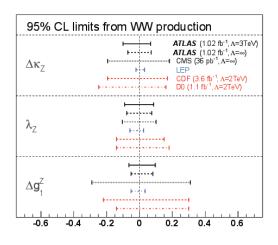
**Table 1:** The observed numbers of data events ( $N_{data}$ ), expected background events ( $N_{bg}$ ), measured cross sections in the fiducial regions ( $\sigma_{fid}$ ), and total cross section measured in each decay channel [ $\sigma(pp \to WW)$ ]. The uncertainties on the cross sections are due to, in order: statistics, systematic uncertainties, and the uncertainty on the luminosity [3].

- evev:  $p_{T,Rel}^{V} > 50 \text{ GeV}$ ,  $m_{ee} > 15 \text{ GeV}$  and  $|m_{ee} m_Z| > 15 \text{ GeV}$ ; and
- $\mu\nu\mu\nu$ :  $p_{TRel}^{\nu} > 55$  GeV,  $m_{\mu\mu} > 15$  GeV and  $|m_{\mu\mu} m_Z| > 15$  GeV;

where  $p_{T,Rel}^{\nu}$  is the transverse component of the sum of the neutrino momenta  $(|\vec{p}_T^{\nu}|)$ , multiplied by the sine of the smallest  $\Delta\phi(\vec{p}_T^l,\vec{p}_T^{\nu})$  when  $\Delta\phi<\pi/2$  [3]. The fiducial regions are exclusive of jets: no jet can have  $p_T>25$  GeV (or  $p_T>20$  GeV if it contains a b-hadron),  $|\eta|<4.5$ , and  $\Delta R(e,\text{jet})>0.3$ . Fiducial muons have  $p_T>20$  GeV (or  $p_T>25$  for the highest  $p_T$  muon in the  $\mu\nu\mu\nu$  final state) and  $|\eta|<2.4$ . Fiducial electrons have  $p_T>20$  GeV and either  $|\eta|<1.37$  or  $1.52<|\eta|<2.47$ . In the definition of charged lepton  $p_T$ , photons within  $\Delta R=0.1$  are added to the momentum of the charged lepton to mimic the effect of electron reconstruction in the detector.

Table 1 shows the WW measurements in each decay channel. The total cross section is determined by dividing the fiducial cross section by  $A_{WW}$  and the branching ratio for each W boson to decay to an electron or muon and at least one neutrino (including decays through tau leptons). Combining the results gives a measured inclusive cross section of


$$\sigma(pp \to WW) = 53.4 \pm 2.1 \text{ (stat)} \pm 4.5 \text{ (sys)} \pm 2.1 \text{ (lum) pb.}$$
 (2.1)


The 10.1% relative uncertainty is dominated by the systematic uncertainty of 8.4%, which receives roughly equal contributions from signal modelling (6.7%) and background estimation (5.1%).

Using data corresponding to 1 fb<sup>-1</sup> of integrated luminosity [4], ATLAS has fit the spectrum of the leading lepton  $p_T$  as a function of anomalous triple-gauge coupling values. This spectrum and the best-fit values are shown in Fig. 1. For comparison, the figure shows anomalous-coupling measurements from D0 and LEP using  $\sqrt{s} = 1.96$  TeV  $p\bar{p}$  and  $\sqrt{s} \leq 209$  GeV  $e^+e^-$  collision data, respectively. The ATLAS, D0 and LEP results are shown for the LEP coupling scenario, which has three free parameters  $\Delta g_1^Z$ ,  $\Delta \kappa_Z$ , and  $\lambda_Z$ , and three relations  $\Delta g_1^\gamma = 0$ ,  $\lambda_\gamma = \lambda_Z$ , and  $\Delta \kappa_\gamma = -\cot^2\theta_W(\Delta\kappa_Z - \Delta g_1^Z)$ . Additionally, Fig. 1 shows results from CMS and CDF in the HISZ scenario, which adds the constraint  $\Delta g_1^Z = \Delta \kappa_\gamma/(2\cos^2\theta_W)$ . Not shown are ATLAS results [4] in the HISZ scenario and in the Equal Couplings scenario where WWZ and  $WW\gamma$  vertices have equal anomalous couplings:  $\Delta\kappa_Z = \Delta\kappa_\gamma$  and  $\lambda_Z = \lambda_\gamma$ .

# 3. Measurements of WZ production

The study of WZ production probes the WWZ coupling with negligible contribution from the WW $\gamma$  vertex. For 66 <  $m_Z$  < 116 GeV, the inclusive  $pp \rightarrow WZ$  production cross section in the SM



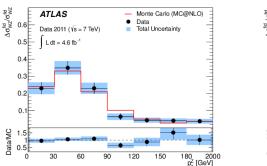


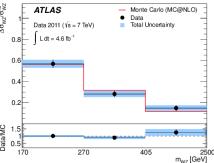
**Figure 1:** Left: The reconstructed  $p_T$  of the highest  $p_T$  charged lepton. Shown are the data (points), the SM contribution (solid histogram) and various anomalous coupling scenarios (other open histograms). Right: The best-fit values of the anomalous couplings in the LEP coupling scenario (ATLAS, D0, and LEP) and the HISZ coupling scenario (CMS, CDF), for various values of the suppression scale  $\Lambda$  [4].

is 17.6 $^{+1.1}_{-1.0}$  pb [5], about a factor of three lower than  $\sigma(pp \to WW)$ . The branching ratio for  $Z \to ll$  is another factor of three lower than  $W \to lv$ ; however, the presence of three charged leptons in the WZ final state results in lower backgrounds, allowing a more inclusive selection with higher acceptance.

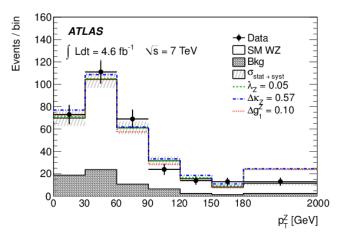
Using data corresponding to 4.6 fb<sup>-1</sup> of luminosity, ATLAS has observed 317 candidates for WZ decay to lllv, where l is an electron or muon. With  $68 \pm 8$  expected background events, the sample is nearly 80% pure. In the fiducial phase space of the combined channels,

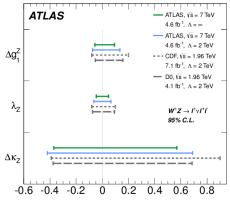
- $p_T^l > 15 \text{ GeV}$  and  $|m_{ll} m_Z| < 10 \text{ GeV}$  for the candidate leptons from the Z boson decay,
- $\bullet$   $p_T^l > 20~{
  m GeV}$  and  $M_T^{lv} > 20~{
  m GeV}$  for the charged lepton candidate from the W boson decay,
- $p_T^{\nu} > 25$  GeV, and
- $|\eta^l| < 2.5$ ,


the cross section is measured to be


$$\sigma_{WZ}^{fid} = 92_{-6}^{+7} \text{ (stat)} \pm 4 \text{ (sys)} \pm 2 \text{ (lum) fb.}$$
 (3.1)

All charged leptons are required to be  $\Delta R > 0.3$  from each other; the measurement is inclusive in jets. Figure 2 shows the differential fiducial measurements of the Z boson candidate  $p_T$  and the mass of the WZ system, after subtracting backgrounds and unfolding detector effects. Extrapolating to the total inclusive cross section gives


$$\sigma(pp \to WZ) = 19.0^{+1.4}_{-1.3} \text{ (stat)} \pm 0.9 \text{ (sys)} \pm 0.4 \text{ (lum) pb.}$$
 (3.2)


To test the predicted triple-gauge couplings of the SM, the  $p_T^Z$  distribution is fit as a function of anomalous coupling values. Figure 3 shows this distribution and the results of the fit, with comparisons to results from CDF and D0.





**Figure 2:** Left: The  $p_T$  of the Z boson candidate. Right: The invariant mass of the WZ system. Both distributions are shown after subtracting backgrounds and unfolding detector effects [5].





**Figure 3:** Left: The  $p_T$  of the Z boson candidate in the SM and in models with various anomalous couplings. Right: Anomalous coupling results using WZ measurements at ATLAS, CDF, and D0 [5].

## 4. Measurements of ZZ production

Production of ZZ occurs through gauge-boson couplings to fermions only, as there are no triple-gauge neutral couplings in the SM. The cross section prediction is  $6.5^{+0.3}_{-0.2}$  pb at  $\sqrt{s}=7$  TeV for on-shell Z bosons. At  $\sqrt{s}=8$  TeV, the predicted cross section is  $7.4\pm0.4$  pb for  $66 < m_Z < 116$  GeV. ATLAS has measured the ZZ production cross section using final states with four charged leptons at both energies, and final states with two charged leptons and neutrinos at  $\sqrt{s}=7$  TeV.

In final states with neutrinos, the cross section is measured in the following fiducial region [6]:

- $|m_{ll} m_Z| < 15 \text{ GeV};$
- $-p_T^{vv} \times \cos(\Delta \phi) > 80$  GeV, where the angle is between  $\vec{p}_T^{vv}$  and  $\vec{p}_T^{ll}$ ;
- $(p_T^{VV} p_T^Z)/p_T^Z < 0.6$ ;
- $p_T^l > 20$  GeV and  $|\eta_l| < 2.5$ ; and
- no jet with  $p_T > 25$  GeV,  $|\eta| < 4.5$ , and  $\Delta R(e, \text{jet}) > 0.3$ ;

where  $\vec{p}_T^{vv}(\vec{p}_T^{ll})$  is the transverse component of the sum of the neutrino (charged-lepton) momenta and  $p_T^{vv}(p_T^Z)$  is its magnitude. In the final states with electrons or muons, 78 events are observed. Subtracting the background of  $40.7 \pm 4.3 \pm 3.7$  events and dividing by the luminosity (4.7 fb<sup>-1</sup>) and correction factor  $C_{ZZ}$ , the fiducial cross section is measured to be

$$\sigma_{ZZ \to llvv}^{fid} = 12.2^{+3.0}_{-2.8} \text{ (stat)} \pm 1.9 \text{ (sys)} \pm 0.5 \text{ (lum) fb.}$$
 (4.1)

Extrapolating the measurement to the total cross section gives

$$\sigma(pp \to ZZ) = 5.4^{+1.3}_{-1.2} \text{ (stat)}^{+1.4}_{-1.0} \text{ (sys)} \pm 0.2 \text{ (lum) pb.}$$
 (4.2)

The four-lepton final state provides the highest purity sample of dibosons. In data corresponding to 4.7 fb<sup>-1</sup> of luminosity from  $\sqrt{s} = 7$  TeV pp collisions, 62 candidate events are observed with < 1 expected background event. The fiducial measurement region is defined by the presence of two pairs of same-flavor opposite-charge leptons (e or  $\mu$ ) with invariant mass in the 66-116 GeV range. Fiducial leptons have  $p_T > 7$  GeV and  $|\eta| < 2.7$ . The measured fiducial cross section is

$$\sigma_{ZZ \to llll}^{fid} = 21.2^{+3.2}_{-2.7} \text{ (stat)} \pm^{+1.0}_{-0.9} \text{ (sys)} \pm 0.8 \text{ (lum) fb.}$$
 (4.3)

A similar measurement has been performed in  $\sqrt{s} = 8$  TeV data corresponding to 5.8 fb<sup>-1</sup> of integrated luminosity [8]. Defining fiducial leptons to have  $p_T > 15$  GeV and  $|\eta| < 2.5$ , ATLAS observes 85 candidate events with a background of 1.3 ± 1.3. The resulting cross section is

$$\sigma_{ZZ \to llll}^{fid} = 21.0^{+2.4}_{-2.2} \text{ (stat)}_{-0.5}^{+0.6} \text{ (sys)} \pm 0.8 \text{ (lum) fb.}$$
 (4.4)

Extrapolating the four-lepton measurements to total cross sections gives

$$\sigma(pp \to ZZ) \,=\, 7.2^{+1.1}_{-0.9} \, (\text{stat})^{+0.4}_{-0.3} \, (\text{sys}) \pm 0.3 \, (\text{lum}) \; \text{pb} \; (\sqrt{s} = 7 \; \text{TeV}) \; \text{and} \eqno(4.5)$$

$$\sigma(pp \to ZZ) = 9.3^{+1.1}_{-1.0} \, (\text{stat})^{+0.4}_{-0.3} \, (\text{sys}) \pm 0.3 \, (\text{lum}) \, \text{pb} \, (\sqrt{\text{s}} = 8 \, \text{TeV}). \tag{4.6}$$

#### 5. Summary

ATLAS has measured diboson cross sections using the full  $\sqrt{s} = 7$  TeV data set in the leptonic decay channels. The first diboson unfolded differential fiducial cross sections have been measured in WZ production. Fits to the leading lepton  $p_T$  in WW candidate data and to  $p_T^Z$  in WZ candidate data have resulted in significant constraints on anomalous triple-gauge couplings. Finally, the first ATLAS diboson measurement at  $\sqrt{s} = 8$  TeV has been performed.

## References

- [1] ATLAS Collaboration, Phys. Lett. B 716, 1 (2012); CMS Collaboration, Phys. Lett. B 716, 30 (2012).
- [2] ATLAS Collaboration, JINST **3**, S08003 (2008).
- [3] ATLAS Collaboration, ATLAS-CONF-2012-025, http://cdsweb.cern.ch/record/1430734.
- [4] ATLAS Collaboration, Phys. Lett. B 714, 289 (2012).
- [5] ATLAS Collaboration, Eur. Phys. J C 72, 2173 (2012).
- [6] ATLAS Collaboration, ATLAS-CONF-2012-027, http://cdsweb.cern.ch/record/1430736.
- [7] ATLAS Collaboration, ATLAS-CONF-2012-026, http://cdsweb.cern.ch/record/1430735.
- [8] ATLAS Collaboration, ATLAS-CONF-2012-090, http://cdsweb.cern.ch/record/1460409.