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1. Introduction

Hadron jets are powerful quantitative tools to study Quantum Chromo Dynamics (QCD) in
high energy physics. Ine+e− colliders PETRA, PEP and LEP, and also in the electron-proton col-
lider HERA, jet studies have been undertaken extensively, yielding a consistent and precise value
of the QCD coupling constantαs(MZ) [2] . At the hadron colliders Tevatron and the LHC, QCD
predictions for jets have been compared with the measured transverse momentum (pT ) distribu-
tions, and also with the multi-jet rates [3, 4, 5] assuming a jet algorithm [6, 7, 8]. The theoretical
framework for calculating the jet cross sections in hadronic collisions in the next-to-leading order
(NLO) accuracy has been in place for well over a decade [9, 10], which has been employed in the
QCD-based analysis of the hadron collider jet data.

In this paper, we summarize the computation of the transverse energy energy correlation and
its asymmetry forpp collisions at the LHC with

√
s = 7 TeV in the NLO accuracy inαs(µ),

published recently by us [1]. These event shape variables were proposed some time ago [11] as
a quantitative measure of perturbative QCD in hadronic collisions. In the leading order inαs(µ),
these distributions show marked sensitivities on the renormalization and factorization scalesµ = µR

andµ = µF , respectively, thereby hindering a determination ofαs(MZ). This is remedied to a large
extent inO(α2

s (µ)), which reduces the scale-dependence to a few per cent. Hence, there is potential
interest in measuring these distributions at the LHC, as they will lead to a quantitative determination
of αs(MZ) in Terascale hadronic collisions.

In Sec. 2, we give the definitions of the transverse EEC and itsasymmetry. In Sec. 3, we
present the numerical results calculated in LO and NLO inαs(µ) and show that the transverse EEC
and its asymmetry in NLO are robust against variations of thevarious input parameters, including
the parton distribution functions (PDFs), and quantify theremaining uncertainties. The sensitivity
of these cross sections onαs(MZ) is presented in the range 0.11 < αs(mZ) < 0.13 at the LHC
(
√

s = 7TeV).

2. Transverse Energy-Energy Correlation and its asymmetry

The transverse EEC function is defined as: [11]

1
σ ′

dΣ′

dφ
≡

∫

√
s

Emin
T

dET d2Σ/dET dφ
∫

√
s

Emin
T

dET dσ/dET

=
1
N

N

∑
A=1

1
∆φ ∑

pairs in ∆φ

2EA
TaEA

Tb

(EA
T )2

, (2.1)

with

σ ′ =
∫

√
s

Emin
T

dET dσ/dET

The first sum on the right-hand side in the second of the above equations is over the events A
with total transverse energy EA

T = ∑a ET
A
a ≥ Emin

T , with the Emin
T set by the experimental setup. The

second sum is over the pairs of partons (a, b) whose transverse momenta have relative azimuthal
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angleφ to φ + ∆φ . In addition, the fiducial volume is restricted by the experimental acceptance in
the rapidity variableη .

In leading order QCD, the transverse energy spectrumdσ/dET is a convolution of the PDFs
with the 2→ 2 hard scattering partonic sub-processes. Away from the end-points, i.e., forφ 6= 0◦

andφ 6= 180◦, the energy-weighted cross sectiond2Σ/dET dφ involves the convolution of the PDFs
with the 2→ 3 sub-processes, such asgg → ggg. Thus, schematically, the leading contribution for
the transverse EEC function is calculated from the following expression:

1
σ ′

dΣ′

dφ
=

Σai,bi fa1/p(x1) fa2/p(x2)⋆ Σ̂a1a2→b1b2b3

Σai,bi fa1/p(x1) fa2/p(x2)⋆ σ̂ a1a2→b1b2
, (2.2)

whereΣ̂a1a2→b1b2b3 is the transverse energy-energy weighted partonic cross section,xi (i = 1,2) are
the fractional longitudinal momenta carried by the partons, fa1/p(x1) and fa2/p(x2) are the PDFs,
and the⋆ denotes a convolution over the appropriate variables. The function defined in Eq. (2.2)
depends not only onφ , but also on the ratio Emin

T /
√

s and rapidityη . The transverse EEC cross
section is to a good approximationindependent of the PDFs [11]. Thus, for a fixed rapidity range
|η | < ηc and the variable ET/

√
s, one has an approximate factorized result, which in the LO in

αs(µ) reads as
1
σ ′

dΣ′

dφ
∼ αs(µ)

π
F(φ) , (2.3)

where

αs(µ) =
1

b0 log(µ2/Λ2)

[

1− b1 log(log(µ2/Λ2))

b2
0 log(µ2/Λ2)

]

, b0 =
33−12n f

12π
, b1 =

153−19n f

24π2 . (2.4)

In the above equation,n f is the active quark flavor number at the scaleµ and the hadronization
scaleΛ is determined by the inputαs(mZ). The functionF(φ) and the corresponding transverse
EEC asymmetry defined as

1
σ ′

dΣ′asym

dφ
≡ 1

σ ′
dΣ′

dφ
|φ −

1
σ ′

dΣ′

dφ
|π−φ , (2.5)

were worked out in [11] in the leading order ofαs(µ) for the CERN SPSpp̄ collider at
√

s = 540
GeV.

3. Next-to-leading order results for the transverse EEC and its asymmetry

In Ref. [1], the program NLOJET++ [10] was used to compute thetransverse EEC and its
asymmetry AEEC in the NLO accuracy for the LHC proton-protoncenter-of-mass energy

√
s = 7

TeV. Schematically, this entails the calculations of the 2→ 3 partonic sub-processes in the NLO
accuracy and of the 2→ 4 partonic processes in the leading order inαs(µ), which contribute to the
numerator on the r.h.s. of Eq. (2.2). We have restricted the azimuthal angle range by cutting out
regions nearφ = 0◦ andφ = 180◦. This would, in particular, remove the self-correlations (a = b)
and frees us from calculating theO(α2

s ) (or two-loop) virtual corrections to the 2→ 2 processes.
Thus, with the azimuthal angle cut, the numerator in Eq. (2.2) is calculated from the 2→ 3 and
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2→ 4 processes toO(α4
s ). The denominator in Eq. (2.2) includes the 2→ 2 and 2→ 3 processes,

which are calculated up to and including theO(α3
s ) corrections.

In the NLO accuracy, one can express the EEC cross section as

1
σ ′

dΣ′

dφ
∼ αs(µ)

π
F(φ)

[

1+
αs(µ)

π
G(φ)

]

. (3.1)

It is customary to lump the NLO corrections in a so-calledK-factor (which, as shown here, is a
non-trivial function ofφ ), defined as

KEEC(φ) ≡ 1+
αs(µ)

π
G(φ) . (3.2)

The transverse EEC asymmetry in the NLO accuracy is likewisedefined as

1
σ ′

dΣ′asym

dφ
∼ αs(µ)

π
A(φ)

[

1+
αs(µ)

π
B(φ)

]

. (3.3)

and the corresponding K-factor is defined as

KAEEC(φ) ≡ 1+
αs(µ)

π
B(φ) . (3.4)

The principal result of [1] is the calculation of the NLO functions KEEC(φ) andKAEEC(φ) and in
demonstrating the insensitivity of the EEC and the AEEC functions, calculated to NLO accuracy,
to the various intrinsic parametric and the underlying event uncertainties. In transcribing the NLO-
JET++ [10] program, the default structure functions therein have been replaced by the state of the
art PDFs, representative of which are the MSTW [12] and the CT10 [13] sets. Also, thekT jet
algorithm used in the NLOJET++ for defining the jets was replaced by theen vogue anti-kT jet
algorithm [8], in which the distance measures of partons aregiven by

di j = min(k−2
ti ,k−2

t j )
(ηi −η j)

2 +(φi −φ j)
2

R2 , diB = k−2
ti , (3.5)

with R being the usual radius parameter. We have assumed the rapidity range|η | ≤ 2.5, have put
a cut on the transverse energyET > 25 GeV for each jet and requireET1 + ET2 > 500 GeV for the
two leading jets. The latter cut ensures that the trigger efficiencies for the LHC detectors will be
close to 100%. We have set the transverse energy of the hardest jet as the default factorization- and
renormalization-scale , i.e.,µF = µR = Emax

T . We then vary the scalesµF and µR independently
in the range 0.5Emax

T ≤ (µF ,µR) ≤ 2Emax
T to study numerically the scale dependence. The effects

induced by the underlying event, multiparton interactionsand hadronization effects have been stud-
ied in [1] using the PYTHIA6 MC [14]. They were computed for two representative values R=0.6
and R=0.4. These effects were found to be small. Typically, the effect of hadronization on the
transverse EEC is found to be≤ 5% and from the underlying event≤ 6% for the jet-size parameter
R = 0.6. The corresponding numbers are≤ 5% and≤ 2% for R = 0.4. To reduce the effect of the
parton showers in the transverse EEC and the AEEC distributions, cosφ is restricted to the range
[−0.8,0.8].

The dependence of the transverse EEC calculated in the NLO accuracy on the PDFs is shown
in Fig. 1 for the two widely used sets: MSTW [12] and CT10 [13],using their respective central
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Figure 1: (color online) Dependence of the transverse EEC cross section (a) and its asymmetry (b) on the
PDFs at NLO inαs. Red entries correspond to the MSTW [12] PDFs and the black ones are calculated using
the CT10 PDF set [13]. The errors shown reflect the intrinsic parametric uncertainties in each PDF set and
the Monte Carlo integration uncertainties.
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Figure 2: (color online) Dependence of the transverse EEC on the scales µF , andµR in LO (a) and in the
NLO (b) in αs for the indicated values of the scales, obtained by settingµF = µR and varying itµF = µR =

[0.5,2]×Emax
T .

(default) parameters. This figure shows that the PDF-related differences on the transverse EEC are
negligible, with the largest difference found in some bins amounting to 3%, (but typically they are
< 1%). The insensitivity of the transverse EEC cross section to the PDFs provides a direct test of
the underlying partonic hard processes. In what follows, wewill adopt the MSTW [12] PDF set as
it provides a correlated range ofαs(MZ) and the structure functions for the current range of interest
for αs(MZ): 0.11< αs(MZ) < 0.13.

We next show the dependence of the transverse EEC cross section and its asymmetry on the
factorization and the renormalization scales in the range(µF ,µR) = [0.5,2]×Emax

T and display
them in Fig. 2 for the transverse EEC and in Fig. 3 for the asymmetric transverse EEC. Effects of
the variations in the scalesµF andµR on the transverse EEC cross section in the LO are shown in
Fig. 2 (a), which is obtained by setting the scalesµF = µR. The corresponding asymmetry of the
transverse EEC cross sections is displayed in Fig. 3 (a). We note that the dominant scale depen-
dence in the LO arises from the variation of the renormalization scaleµR. The results obtained in
the NLO are shown in Fig.2 (b) for the transverse EEC and in Fig. 3 (b) for the asymmetry. One
observes significantly less dependence on the scales; in particular the markedµR-dependence in
the LO is now reduced. Typical scale-variance on the transverse EEC distribution in the NLO is
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Figure 3: (color online) Same as Fig. 2 but for the asymmetric transverse EEC.
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Figure 4: (color online) Comparison of the LO-, NLO-, and the PYTHIA-based results for the transverse
EEC and its asymmetry . Left frame displays the functionKEEC(φ) (boxes, red entries) as defined in Eq. (3.2)
and a phenomenological function obtained by replacing the LO results by the PYTHIA MC results (triangles,
black entries). Right frame shows the corresponding functionKAEEC(φ) for the transverse EEC asymmetry
defined in Eq. (3.4). The errors shown are described in text.

found to be 2% - 3%, with the largest effects in some bins reaching 5%. This scale-insensitivity
in the NLO accuracy is crucial to undertake a quantitative determination ofαs from the collider jet
data.

Having shown that the uncertainties due to underlying events and the PDFs are negligible,
and the scale dependence is much reduced in the NLO, we present our results for the transverse
EEC in the LO and the NLO accuracy and the corresponding results for the transverse AEEC. We
also compute these distributions from a MC-based model which has the LO matrix elements and
multiparton showers encoded. To be specific, we have used thePYTHIA8 [14] MC program and
have generated the transverse EEC and the AEEC distributions. This comparison provides a prac-
tically convenient way to correct the PYTHIA8 MC-based theoretical distributions, often used in
the analysis of the hadron collider data, due to the NLO effects. In Fig. 4 (left frame), we show
the functionKEEC(φ) defined in Eq. (3.2), and another phenomenological functionin which the
NLO transverse EEC distribution is normalized to the one generated by the PYTHIA8 [14] MC
program. The corresponding functionKAEEC(φ), defined in Eq. (3.4), is shown in Fig. 4 (right
frame). Here also we show the corresponding phenomenological function in which the transverse
EEC obtained in NLO is normalized to the ones generated by thePYTHIA MC. The effects of the
NLO corrections are discernible, both compared to the LO andPYTHIA8 [14], and they are signif-
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Figure 5: (color online) Transverse EEC cross section (a) and its asymmetry (b) with three values ofαs(MZ)

= 0.11 (blue; triangles),= 0.12 (red, boxes), and= 0.13 (black, inverted triangles). The bottom panel of the
figures demonstrate the size of errors (red, histograms withvertical lines) and deviations with the values of
αs(MZ) = 0.11 (blue, lower histogram) and= 0.13 (black, upper histogram) from the results evaluated with
αs = 0.12.

icant in the large-angle region (i.e., for cosφ < 0). Thus, the NLO effects in the EEC distribution
reduce the scale-dependence, in particular onµR, and distort the shape of both the EEC and AEEC
distributions, providing a non-trivial test of the NLO effects.

We now discuss the main interest in this work, which is the sensitivity of the transverse EEC
and the AEEC onαs(MZ). In relating the strong couplingαs(µ) at a certain scale relevant for
the collider jets, such asµ = Emax

T , to the benchmark valueαs(MZ), we have used the two-loop
β -function and the explicit formula for transcribingαs(µ) to αs(MZ) can be seen in Eq. (2.4).
Results for the transverse EEC and the AEEC are shown in Fig. 5(a) and Fig. 5 (b), respectively,
for the three indicated values ofαs(MZ) = 0.11 (blue; triangles),= 0.12 (red, boxes), and= 0.13
(black, inverted triangles). The scale uncertainties are included only in the curve corresponding
to αs(MZ) = 0.12, as it is close to the current world averageαs(MZ) = 0.1184 [16] and hence our
focus on this value. To demonstrate the intrinsic errors in the calculations of the transverse EEC and
its asymmetry, we show the percentage size of the errors in the lower part of Fig. 5 (a) and Fig. 5 (b),
respectively, forαs(MZ) = 0.12. Concentrating first on the transverse EEC, we see that thebin-by-
bin errors are typically+2% and−6% (for |cosφ | ≤ 0.6), and somewhat larger for|cosφ | > 0.6.
A part of this error is of statistical origin in our Monte Carlo based theoretical calculations and
is reducible, in principle, with the help of a more effectiveimportance sampling algorithm in the
event generation. However, a part of the error is irreducible, given the current theoretical (NLO)
precision. This is quantified for the normalized integratedtransverse EEC X-section over the cosφ
range shown in the figures above, which largely removes the statistical (bin-by-bin) error:

αs(mZ) 0.11 0.12 0.13

〈 1
σ ′

dΣ′
dφ 〉 0.092+0.001

−0.005 0.101+0.001
−0.005 0.111+0.001

−0.005
. (3.6)

The computational error on the transverse AEEC is larger, asshown in Fig. 5 (b) forαs(MZ) =

0.12. In particular, the errors for the last four bins in the AEEC X-section are large due to the
intrinsically small value of this cross-section as cosφ → 0. However, in the region−0.8≤ cosφ ≤
−0.4, a clear dependence of the differential transverse AEEC onαs(MZ) is discernible. This is also
displayed for the normalized integrated transverse AEEC X-section given below (in units of 10−3),
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in which the last four bins contribute very little:

αs(mZ) 0.11 0.12 0.13

〈 1
σ ′

dΣ′ asymm

dφ 〉 13.6+0.2
−1.4 14.8+0.3

−1.5 16.4+0.4
−1.6

. (3.7)

4. Summary

We have summarized the LO and the NLO results for the transverse EEC and its asymmetry
for jets at the LHC computed in [1] . These distributions are shown to have all the properties that are
required for the precision tests of perturbative QCD. In particular, they (i) are almost independent
of the structure functions, with typical uncertainties at 1%, (ii) show weak scale sensitivity; varying
the scale fromµ = ET /2 to µ = 2ET , the uncertainties are less than 5% with the current (NLO)
theoretical accuracy, (iii) their dependence on modeling the underlying minimum bias events for
judicious choice of the parameterR is likewise mild, ranging typically from 2% to 5% as one varies
from R = 0.4 to R = 0.6, and (iv) preserve sensitivity toαs(MZ); varying αs(MZ) = 0.11 to 0.13,
the transverse EEC (AEEC) cross section changes approximately by 20% (15%), and thus these
distributions will prove to be powerful techniques for the quantitative study of event shape variables
and in the measurement ofαs(MZ) in hadron colliders.
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