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The massive Wilson coefficients in deep-inelastic scattering are known to be expressible in
the limit of high virtualitiesQ2 ≫ m2 as convolutions between massive operator matrix elements
(OMEs) and massless Wilson coefficients [1]. Herem denotes the heavy quark mass. The gen-
eral structure of the Wilson coefficients toO(α3

s ) has been derived in [2]. These massive Wilson
coefficients are in turn convoluted with parton distribution functions to obtain the heavy flavor con-
tributions to DIS structure functions at leading twist. They have been calculated for the twist-2
heavy flavor contributions to the unpolarized structure functions at leading [3] and next-to-leading
order [4] 1 for general values ofQ2. Since the massless Wilson coefficients are known by now at
3-loop order [6], it remains to compute the OMEs analytically atO(α3

s ), in order to obtain the mas-
sive Wilson coefficients at NNLO. These coefficients will allow for a consistent NNLO analysis of
the deep-inelastic world data atQ2>

∼20GeV2, cf. [7].
In these proceedings, we discuss recent progress obtained in this direction. Our aim is to calcu-

late all contributing OMEs for general values of the Mellin variableN. An important previous step
towards this goal was the computation of the moments of the massive OMEs forN = 2. . .10(14)
contributing in the fixed and variable2 flavor schemes [2]. The 3-loop heavy flavor corrections to
FL(x,Q2) in the asymptotic case were calculated in [9]. First resultsfor general values ofN for the
color factor factorsT2

FCA,F were calculated in [10] for two heavy quark lines of the same mass. The
case of two different quark masses was considered in [10, 11]for fixed moments. Results for the
color factorsnf T2

FCA,F for generalN were obtained in [12,13] and the calculation of 3-loop ladder
topologies was performed in [14]. Two–loop results up toO(ε) were obtained in [15]. Here the
massive OMEs are computed for on-shell external massless partons. The case of a massive on-shell
external fermion line was studied at two loops in [16] in caseof QED.

In the following we will describe the methods used to performthese computations. We gen-
erate the Feynman diagrams usingQGRAF [17]. After the numerators of these diagrams are con-
tracted with appropriate projectors we end up with a large set of scalar integrals. Many of these
integrals are calculated using a variety of approaches, namely,

1. Modern summation algorithms, implemented in theMathematica packageSigma [18].

2. The method of hyperlogarithms for convergent integrals,generalizing the method developed
in [19] to one additional variablex.

3. Mellin-Barnes integral representations [20].

4. The use of integration by parts identities [21] to expressall integrals in terms of a small set
of masters integrals.

We will focus here on the first two methods and show a few examples. The Feynman diagrams
with operator insertions may be turned into nested sums [22]. These infinite and finite sums may
be solved usingSigma whenever they have a representation in terms of elements of difference-
and product fields. This includes divergent diagrams, sincethe different poles and powers inε may
be separated. Let us consider the scalar integrals associated with the ladder diagrams like the one
shown in Fig. 1. In this diagram, the loop fermion is massive and the momentum of the external

1For a precise implementation in Mellin space see [5].
2In using variable flavor schemes a correct scale matching is of importance [8].
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p → → p

q

q − p
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q − l

k − l

l

l − p

Figure 1: 3-loop ladder diagram containing a central local operator insertion.

gluons isp, with p2 = 0. We consider the case where all powers of propagators are equal to one,
and in the numerator of the integral we only have the operatorinsertion(∆ · l)N. The result after
Feynman parameterization and calculation of the loop-momentum integrals turns out to be [14]

I1a =
i(∆.p)Na3

sS3
ε

(m2)2− 3
2ε

Î1a , (1)

whereSε is the spherical factorSε = exp
[ ε

2(γE − ln(4π))
]

, and

Î1a = −exp

(

−
3
2

εγE

)

Γ(2−3ε/2)
7

∏
i=1

∫ 1

0
dwi

θ(1−w1−w2)w
−ε/2
1 w−ε/2

2 (1−w1−w2)
(

1+w1
w3

1−w3
+w2

w4
1−w4

)2−3ε/2

×wε/2
3 (1−w3)

−1+ε/2wε/2
4 (1−w4)

−1+ε/2(1−w5w1−w6w2− (1−w1−w2)w7)
N . (2)

Expanding the polynomial that appears raised to theNth power, one can see that thew1- and
w2-integrals, can be written in terms of an Appell hypergeomteric function. After an appropri-
ate analytic continuation, we end up with the following representation of the integral in terms of
multiple sums,

Î1a =
exp
(

−3
2εγE

)

Γ(2−3ε/2)

(N+1)(N+2)(N+3)

∞

∑
m,n=0

{

N+2

∑
t=1

(

N+3
t

)

(t − ε/2)m(N+2+ ε/2)m+n(N+3− t − ε/2)n

(N+4− ε)m+n

×Γ
[

t, t − ε/2,m+1+ ε/2,n+1+ ε/2,N+3− t,N+3− t− ε/2
N+4− ε ,m+1,n+1,m+ t+1+ ε/2,N+n− t +4+ ε/2

]

−
N+3

∑
s=1

s−1

∑
r=1

(

s
r

)(

N+3
s

)

(−1)s(r − ε/2)m(s−1+ ε/2)m+n(s− r − ε/2)n

(s+1− ε)m+n

×Γ
[

r, r − ε/2,s− r,m+1+ ε/2,n+1+ ε/2,s− r − ε/2
m+1,n+1,m+ r +1+ ε/2,s− r +n+1+ ε/2,s+1− ε

]

}

. (3)

We can now expand inε , and the resulting multiple sums can then be performed usingthe package
Sigma. The result for this and other integrals can be written in terms of harmonic sumsS~a [23]
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and their generalizationsS~a(~ξ ;N) [24,25]3:

Sb,~a(N) =
N

∑
k=1

sign(b)k

k|b|
S~a(k), S/0(k) = 1

Sb,~a(η ,~ξ ;N) =
N

∑
k=1

ηk

kb S~a(~ξ ;k), S/0 = 1, η ,ξ ∈ R . (4)

Omitting the explicit dependence of the harmonic sums onN, we obtain

Î1a = −
4(N+1)S1+4
(N+1)2(N+2)

ζ3+
2S2,1,1

(N+2)(N+3)
+

1
(N+1)(N+2)(N+3)

{

−2(3N+5)S3,1−
S4

1

4

+
4(N+1)S1−4N

N+1
S2,1+2

[

(2N+3)S1+
5N+6
N+1

]

S3+
2(3N+5)S2

1

(N+1)(N+2)
+

9+4N
4

S2
2

+

[

2
7N+11

(N+1)(N+2)
+

5N
N+1

S1−
5
2

S2
1

]

S2+
N

N+1
S3

1+
4(2N+3)

(N+1)2(N+2)
S1

−
1
2
(2N+3)S4 +8

2N+3
(N+1)3(N+2)

}

. (5)

This result was checked usingMATAD [27] for the fixed momentsN = 1. . .10. Other, more in-
volved, integrals calculated in a similar way were given in Ref. [14].

The second method we have used to compute the integrals is based on an algorithm originally
proposed in [19]. It is applicable when the integral turns out to be finite, even in case for local
operator insertions for a fixed integer value of the Mellin variable N. We have generalized this
method to the case allowing for one non-vanishing fermion mass and local operator insertions
in order to find the generalN-representations for convergent 3-loop topologies. We work in the
α-representation and obtain integrals of the form

I4(N) =
∫

· · ·
∫

dα1 dα2 dα3 dα4 dα5 dα6 dα7 dα8
T

U2V2δ

(

1−∑
i

αi

)

. (6)

The corresponding graph polynomials of a graphG are given by

• U = ∑T ∏l /∈T αl , whereT denotes the spanning trees ofG.

• V = ∑l∈massiveαl .

• Dodgson polynomials [28]T arise from the operator insertions. The form of these poly-
nomials will depend on the specific operator insertion we areconsidering.

The integrals given by (6) are projective integrals, where oneα-parameter may be set to one
eliminating theδ–distribution. The operators sit on on-shell diagrams which obey specific symme-
tries. These are generally not obeyed by the operator insertion. The Feynman parameter integrals
are now performed in terms of hyperlogarithms [19]L(−→w ,z) : C\Σ → C, where

• Σ = {σ0,σ1, ...,σN} are distinct points inC which may contain integration variables.

3Cyclotomic and generalized cyclotomic harmonic sums and polylogarithms and their relations have been treated
in [26].
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• −→w is a word over the alphabetA= {a0,a1, ...,aN}, where each letterai corresponds to a
point σi .

L(−→w ,z) is uniquely defined by the following properties :

L({},z) = 1, and L(0n,z,) =
1
n!

logn(z) for n≥ 1

∂
∂z

L({ai
−→w} ,z) =

1
z−σi

L(−→w ,z) for z∈C\Σ

If −→w is not of the formw= (0,0, · · · ,0), then lim
z→0

L(−→w ,z) = 0. (7)

For example,L(ai ,z) = log(z−σi)− log(σi).

The hyperlogarithms satisfy shuffle relations, e.g.

L({a1,a2},z)L({a3},z) = L({a3,a1,a2},z)+L({a1,a3,a2},z)+L({a1,a2,a3},z) . (8)

The points to which the indicesai correspond may contain further integration variables. Using
these properties after partial fractioning and integration by parts, one can express any primitive for
expressions consisting of rational and hyperlogarithmic functions in terms of different hyperloga-
rithmic functions. These primitives have to be evaluated atthe respective integration limits. Due
to the operator-insertions leading to power-type functions, the integrals do not fit directly into the
framework of the algorithm for general values ofN. In order to obtain the corresponding extension
a generating function is constructed by the mapping,

p(α1, · · · ,αn)
N →

∞

∑
k=0

xkp(α1, · · · ,αn)
k =

1
1−x p(α1, · · · ,αn)

. (9)

Figure 2: A 3-loop Benz diagram.

Performing the Feynman-parameter integrations then leadsto an expression which contains hyper-
logarithmsLw in the variablex. Using this method, the scalar integral with all powers of propagators
equal to one associated with the diagram shown in Fig. 2, corresponding to a Benz-type topology,
yields

I(x) =
1

(1+N)(2+N)x

{

ζ3

[

2L({−1},x)−2(−1+2x)L({1},x)−4L({1,1},x)
]

−3L({−1,0,0,1},x) +2L({−1,0,1,1},x)−2xL({0,0,1,1},x) +3xL({0,1,0,1},x)

−xL({0,1,1,1},x) + (−3+2x)L({1,0,0,1},x) +2xL({1,0,1,1},x)−L({1,0,1,1,1},x)

5
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−(5x−1)L({1,1,0,1},x) +xL({1,1,1,1},x)−2L({1,0,0,1,1},x) +3L({1,0,1,0,1},x)

+2L({1,1,0,0,1},x) +2L({1,1,0,1,1},x)−5L({1,1,1,0,1},x) +L({1,1,1,1,1},x)

}

.

(10)

Finally, theNth coefficient of this expression inx has to be extracted analytically in order to undo
the mapping (9). This is achieved using theGetMomentsoption of the packageHarmonicSums
[25]. One may also use guessing-methods to obtain the corresponding difference equation based
on a huge number of moments, cf. [29]. For a more complicated graph with non-trivial argument
structure inx we were able to produce∼ 1500 moments [30]. One obtains from Eq. (10)

I(N) =
1

(N+1)(N+2)(N+3)

{

648+1512N+1458N2+744N3+212N4+32N5+2N6

(1+N)3(2+N)3(3+N)3

−
2
(

−1+(−1)N +N+(−1)NN
)

(1+N)
ζ3− (−1)NS−3−

N
6(1+N)

S3
1+

1
24

S4
1−

1
4

S4

−

(

7+22N+10N2
)

2(1+N)2(2+N)
S2−

19
8

S2
2−

1+4N+2N2

2(1+N)2(2+N)
S2

1+
9
4

S2−
(−9+4N)

3(1+N)
S3

−2(−1)NS−2,1+
(−1+6N)

(1+N)
S2,1+

54+207N+246N2+130N3+32N4+3N5

(1+N)3(2+N)2(3+N)2 S1

+4ζ3S1−
(−2+7N)

2(1+N)
S2S1+

13
3

S3S1−7S2,1S1−7S3,1+10S2,1,1

}

. (11)

Another example, where this technique has been applied, is shown in Fig. 3.

Figure 3: A second example of a 3-loop Benz topology.

In this case the result is

I(N) =
1

(N+1)(N+2)

{

2
(

1−13(−1)N +(−1)N23+N +N−7(−1)NN+3(−1)N21+NN
)

(1+N)(2+N)
ζ3

+
1

(2+N)
S3+

(−1)N

2(2+N)
S3

1−
(−1)N(3+2N)

2(1+N)2(2+N)
S2+

5(−1)N

2
S2

2+
2(−1)N(3+N)

(1+N)(2+N)
S2,1

+
(−1)N(3+2N)

2(1+N)2(2+N)
S2

1−
(−1)N

2
S2S2

1+
3(−1)N(4+3N)

(1+N)(2+N)
S3+3(−1)NS4+

2
(2+N)

S−2,1

−12(−1)NS1ζ3+
(−1)N(5+7N)

2(1+N)(2+N)
S1S2+3(−1)NS1S3+4(−1)NS2,1S1−4(−1)NS3,1

6
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−
4
(

(−1)N22+N −3(−2)NN+3(−1)N21+NN
)

(1+N)(2+N)
S1,2

(

1
2
,1

)

−5(−1)NS2,1,1

+2(−1)Nζ3S1 (2)+
2
(

−(−1)N22+N −13(−2)NN+5(−1)N21+NN
)

(1+N)(2+N)
S1,1,1

(

1
2
,1,1

)

−2(−1)NS1,1,2

(

2,
1
2
,1

)

− (−1)NS1,1,1,1

(

2,
1
2
,1,1

)

}

. (12)

Notice the presence of generalized harmonic sums and highlydivergent factors in the limit
N → ∞, such as 2N. It can be shown, however, that the complete expression is convergent in this
limit and possesses a well-defined asymptotic expansion forN → ∞. In general neither the repre-
sentation in individual nested sums or by iterated integrals shows this property, but a corresponding
combination of terms does.

We calculated the contributions ofO(nf T2
FCA,F) to all massive OMEs completely [12, 13].

Furthermore, first systematic results were obtained for thecase of graphs containing two massive
fermion lines withm1 = m2. A typical graph is shown in Fig. 4 in the gluonic case.

Figure 4: A 3-loop graph containing two massive fermion linesm1 = m2 and an operator insertion.

One obtains

I =
1

105ε2 +
1
ε

[

74N3−455N2+381N−210
44100(N−1)N(N+1)

−
1

210
S1(N)

]

+
8903N3+39537N2−114440N+36576

2822400(N+1)(2N−3)(2N−1)
S1(N)

+
P1

148176000(N−1)2N2(N+1)2(2N−3)(2N−1)
+

1
840

(

S1(N)2+S2(N)+3ζ2

)

+
2−2N−9(N−1)N(5N−6)

3(2N−3)(2N−1)

(

2N
N

)

(

−7ζ3−
N

∑
j=1

4 j

(2 j
j

)

j3
+

N

∑
j=1

4 jS1( j)
(2 j

j

)

j2

)

, (13)

P1 =1795487N8 −7087789N7+10654130N6−5797102N5+6828839N4−16594069N3

+9651144N2+902160N−1058400. (14)

Integrals of this type usually contain finite binomial and inverse binomial sums, which even may
be nested.

In conclusion, we have seen that the methods shown here allowus to obtain analytic expres-
sions at general values ofN for 3–loop integrals contributing to the massive OMEs whichcould not
be obtained by other methods before. We continue working on the set of integrals that we need in
order to obtain all necessary operator matrix elements. In particular, we are studying the possibility

7
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also to extend the method of hyperlogarithms. Application of these methods to the more compli-
cated case of non-planar integrals are underway. The package Sigma and related packages are
continuously being upgraded to be able to meet the challenges that keep arising in this endeavor.
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