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Abstract:   

A thermodynamical bag model is used to calculate the nucleon structure function by 

treating the quarks and gluons as Fermi and Bose gases. In this article this model is used to 

calculate the longitudinal structure function which is related to the ratio of absorption cross 

section for longitudinally and transversely polarized virtual photons. This can then be compared 

with the corresponding experimental values and other models. It is found to agree well with 

experimental data. 

INTRODUCTION: 
The deep inelastic cross section is expressed in terms of the nucleon structure functions. In the 

parton model of the nucleon, the deep inelastic scattering (DIS) cross section can be expressed as the 

incoherent sum of elastic lepton–quark cross sections, and hence it depends on the quark distribution 

functions. Thus the deep inelastic scattering experiments give valuable information on the quark 

distribution functions. The statistical model that is proposed for the nucleon yields the quark 

distribution functions that compare favorably well with the experimental results obtained from deep 

inelastic scattering experiments [1]. 

As it is the deep inelastic scattering of leptons that reveals much of the quark structure of the 

nucleon, let us start with a brief review of DIS. Then, following Devanathan et al. [1–5], we shall 

treat the nucleon as a MIT bag consisting of quarks and gluons. Treating them as Fermi gas and 

Bose gas and using their relevant statistical distribution functions, equations of state for the nucleon 

are obtained and solved self-consistently. Transformation of the Fermi and Bose statistical 

distribution functions to the infinite momentum frame yields the quark and gluon distribution 

functions. The nucleon structure functions are calculated using the quark distribution functions and 

compared with the results obtained from DIS experiments. If the spin degree of freedom is included 

in the Fermi statistical distribution function then one can obtain the quark spin distribution function 

and obtain the polarized nucleon structure functions. 
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The Statistical Model of the Nucleon 
The deep inelastic scattering of leptons on nucleons indicates that the nucleon consists of three valence 

quarks, sea quarks and gluons, confined within a small volume. 

 

Proton: u u d   +      quark–antiquark pairs + gluons 

(Valence quarks)          (Sea quarks) 

 

Neutron: u d d         +       quark–antiquark pairs + gluons 

(Valence quarks)                  (Sea quarks) 

 Based on this observation, a statistical model was developed for the nucleon. It is a MIT bag consisting 

of quark–gluon gas, for which the Fermi distribution function is used for describing the quarks and the 

Bose distribution function for describing the gluons. Treating the quarks as particles of zero rest mass, 

the number density of u-quarks with momentum lying between p and p + dp at temperature T is given 

by the Fermi distribution function [2-7]. 

 

   𝑛𝑛𝑢𝑢(𝑝𝑝) = 𝑔𝑔
(2𝜋𝜋)3

1
𝑒𝑒 (𝜖𝜖−𝜇𝜇 𝑢𝑢 )/𝑇𝑇+1

         (1) 

 

where 𝜖𝜖 is the energy and 𝜇𝜇𝑢𝑢   the chemical potential of the u-quark. The degeneracy factor g is 6 which 

is the number of degrees of freedom (3 due to colour and 2 due to spin) available for each flavour of 

quarks. Similar equations can be written for the d -quarks and the antiquarks. The chemical potential 

for the d -quark 𝜇𝜇𝑑𝑑  is, in general, different from that of u-quark. The chemical potential for the 

antiquark is of opposite sign to the chemical potential of the quark. With this observation, we can 

write down the distributions functions for d -quarks and antiquarks. 

 

  𝑛𝑛𝑑𝑑(𝑝𝑝) = 6
(2𝜋𝜋)3

1
𝑒𝑒 (𝜖𝜖−𝜇𝜇 𝑑𝑑 )/𝑇𝑇+1

                   (2) 

  𝑛𝑛𝑢𝑢�(𝑝𝑝) = 𝑔𝑔
(2𝜋𝜋)3

1
𝑒𝑒 (𝜖𝜖+𝜇𝜇 𝑢𝑢 )/𝑇𝑇+1

                   (3) 

  𝑛𝑛𝑑𝑑�(𝑝𝑝) = 𝑔𝑔
(2𝜋𝜋)3

1
𝑒𝑒 (𝜖𝜖+𝜇𝜇 𝑑𝑑 )/𝑇𝑇+1

                   (4) 

Given the distribution functions, we can obtain the number density (number per unit volume) of each 

flavour of quarks by integration over the momentum.  

       𝑛𝑛𝑢𝑢 = ∫𝑛𝑛𝑢𝑢(𝑝𝑝)𝑑𝑑3𝑝𝑝, 

  

       𝑛𝑛𝑑𝑑 = ∫ 𝑛𝑛𝑑𝑑(𝑝𝑝)𝑑𝑑3𝑝𝑝,         (5) 



P
o
S
(
I
C
H
E
P
2
0
1
2
)
3
1
9

3 

 

 

       𝑛𝑛𝑢𝑢� = ∫𝑛𝑛𝑢𝑢�(𝑝𝑝)𝑑𝑑3𝑝𝑝, 

       

       𝑛𝑛𝑑𝑑� = ∫𝑛𝑛𝑑𝑑�(𝑝𝑝)𝑑𝑑3𝑝𝑝, 

 

For the proton, the number of u valence quarks is 2 and the number of d valence quarks is 1. If V is 

the volume of proton, then 

𝑛𝑛𝑢𝑢 − 𝑛𝑛𝑢𝑢� = 2; 𝑛𝑛𝑑𝑑 − 𝑛𝑛𝑑𝑑� = 1.                      (6) 

For the gluons, there is no number conservation and hence the chemical potential for the gluon is 

zero. The number density of the gluons is given by the Bose distribution function. 

 

                                 𝑛𝑛𝑔𝑔(𝑝𝑝) = 16
(2𝜋𝜋)3

1
𝑒𝑒𝜖𝜖/𝑇𝑇−1

                                (7) 

The degeneracy factor for the gluons is 16, of which 8 is due to the color degree of freedom and 2 due to 

the transverse components of spin. 

In a similar way, one can find the energy density 𝜀𝜀𝑞𝑞  of each flavor of quarks and antiquarks (u, d, 

𝑢𝑢�  and �̅�𝑑) and calculate their contributions to the total energy density. As we have assumed zero rest 

mass for the quarks, the energy of the quark  𝜀𝜀 is numerically equal to its momentum p in the natural 

units ( = 𝑐𝑐 = 1). 

 

𝜀𝜀𝑞𝑞 = ∫ 6
(2𝜋𝜋)3

𝑝𝑝
𝑒𝑒 (𝑝𝑝−𝜇𝜇 𝑞𝑞 )/𝑇𝑇+1

 𝑑𝑑3𝑝𝑝 ,             𝜀𝜀𝑞𝑞� = ∫ 6
(2𝜋𝜋)3

𝑝𝑝
𝑒𝑒 (𝑝𝑝+𝜇𝜇 𝑞𝑞 )/𝑇𝑇+1

 𝑑𝑑3𝑝𝑝     (8) 

 

For the gluons, the energy  density is  

 𝜀𝜀𝑔𝑔 = ∫ 16
(2𝜋𝜋)3

𝑝𝑝
𝑒𝑒 (𝑝𝑝 )/𝑇𝑇+1

 𝑑𝑑3𝑝𝑝                                                     (9) 

 The energy density due to all the quarks and gluons is the sum. 

     𝜀𝜀 =  𝜀𝜀𝑢𝑢  + 𝜀𝜀𝑑𝑑 + 𝜀𝜀𝑢𝑢� + 𝜀𝜀𝑑𝑑� + 𝜀𝜀𝑔𝑔      (10) 

Now, the equations of state for the proton 

𝜀𝜀(𝑇𝑇)𝑉𝑉 + 𝐵𝐵 𝑉𝑉 = 𝑊𝑊      (11) 

𝑛𝑛𝑢𝑢 − 𝑛𝑛𝑢𝑢� = 2
𝑉𝑉

=  𝜇𝜇𝑢𝑢𝑇𝑇2 + 𝜇𝜇𝑢𝑢3/𝜋𝜋2     (12) 

𝑛𝑛𝑑𝑑 − 𝑛𝑛𝑑𝑑� = 1
𝑉𝑉

=  𝜇𝜇𝑑𝑑𝑇𝑇2 + 𝜇𝜇𝑑𝑑3/𝜋𝜋2     (13) 

𝑃𝑃 = �1
3
� 𝜀𝜀(𝑇𝑇) −  𝐵𝐵 = 0      (14) 
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The energy density 𝜀𝜀(𝑇𝑇) is also a function of temperature. So, this bag model describes the nucleon 

not only in the ground state (T = 0) but also in the excited states at higher temperature. So, it can be 

truly described as the thermodynamical bag model of the nucleon. The bag constant is denoted by B 

and the volume of the bag by V. The mass of the nucleon M  in the thermodynamical bag model 

corresponds to T  = 0 and W denotes the mass of the excited nucleon at some finite temperature T . 

Equation (14) arises from the pressure balance condition or the energy minimization condition with 

respect to the bag volume. 

Let us consider the ground state of the nucleon which corresponds to T = 0. Given the mass of the 

nucleon M =  938.4 MeV, we can determine all the other four quantities by solving the four 

equations (11) – (14), using any numerical method such as the Newton-Raphson method. 
 

𝜇𝜇𝑢𝑢 = 335.9 𝑀𝑀𝑒𝑒𝑉𝑉, 𝜇𝜇𝑑𝑑 = 266.6 𝑀𝑀𝑒𝑒𝑉𝑉 ,𝐵𝐵
1
4 = 145.68 𝑀𝑀𝑒𝑒𝑉𝑉, 𝑅𝑅 = 0.985 𝑓𝑓𝑓𝑓.  

It is remarkable that this naive approach yields correctly the nucleon radius R. Assuming the value 

of the bag constant B, one can determine W; 𝜇𝜇𝑢𝑢  ; 𝜇𝜇𝑑𝑑  ; V at any higher temperature by solving the 

equations of state. As it is possible to extend the study to higher temperatures by this method, this is 

known as the thermodynamical bag model (TBM). All parameters obtained  so are tabulated in 

Table 1.  
 

Table 1  Table showing the dependence of temperature T , bag radius R and chemical potentials 𝜇𝜇𝑢𝑢   

and 𝜇𝜇𝑑𝑑   on the Bjorken variable x along with the quark distribution functions for the proton in DIS (Q2 

= 4 Gev2 ) 
 

 
x 

0.15 

W (MeV) 

4854 

T (MeV) 

85.7 

R (fm) 

2.1275 

 µu(MeV) 

50.1 

µd (MeV) 

25.7 

xu(x) 

0.442 

xd(x) 

0.306 

x𝑢𝑢�  

0 085 

x�̅�𝑑 

0 130 

 
0.20 4110 85.5 2.0057 59.3 30.7 0.530 0.337 0.070 0.117 
0.30 3197 84.9 1.8297 76.7 40.6 0.559 0.301 0.035 0.069 
0.40 2623 84.2 1.6958 94.2 51.2 0.468 0.216 0.014 0.032 
0.50 2209 83.1 1.5805 113.2 63.5 0.345 0.136 0.005 0.012 
0.60 1883 81.6 1.4722 135.2 78.9 0.235 0.080 0.001 0.004 
0.70 1611 79.0 1.3622 162.6 100.0 0.153 0.043 0.000 0.001 
0.80 1371 74.0 1.2414 200.6 132.2 0.093 0.021 0.000 0.000 
0.90 1151 61.1 1.1025 259.4 187.6 0.042 0.006 0.000 0.000 
0.95 1045 45.9 1.0347 298.1 226.6 0.012 0.001 0.000 0.000 
1.00 938 0.0 0.9849 335.9 266.6 0.000 0.000 0.000 0.000 
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Longitudinal Structure function (FL) 
Inclusive scattering cross section measurements are the important factor in understanding the 

nucleon structure in eN collision. The DIS cross section by virtual photon exchange is given by 

 

𝑑𝑑2𝜎𝜎
𝑑𝑑𝑑𝑑𝑑𝑑 𝑄𝑄2 = 2𝜋𝜋𝛼𝛼2

𝑄𝑄4𝑑𝑑
𝑌𝑌+ ��𝐹𝐹2(𝑑𝑑,𝑄𝑄2)� − 𝑦𝑦2𝐹𝐹𝐿𝐿(𝑑𝑑,𝑄𝑄2)�, 

 

where 𝑌𝑌+ = 1 + (1 − 𝑦𝑦2), 𝑦𝑦 = 𝑄𝑄2/𝑠𝑠𝑑𝑑 is the inelasticity, s is the center of mass energy squared and 𝛼𝛼 

is the fine structure constant. The structure functions 𝐹𝐹2 and 𝐹𝐹𝐿𝐿 are related to the photon cross sections 

𝜎𝜎𝐿𝐿 and 𝜎𝜎𝑇𝑇   as 

𝐹𝐹2(𝑑𝑑,𝑄𝑄2) =  
𝑄𝑄2

4𝜋𝜋2𝛼𝛼
(𝜎𝜎𝑇𝑇(𝑑𝑑,𝑄𝑄2) + 𝜎𝜎𝐿𝐿(𝑑𝑑,𝑄𝑄2)) 

𝐹𝐹𝐿𝐿(𝑑𝑑,𝑄𝑄2) =  
𝑄𝑄2

4𝜋𝜋2𝛼𝛼
(𝜎𝜎𝐿𝐿(𝑑𝑑,𝑄𝑄2) 

Also, 0 ≤ 𝐹𝐹𝐿𝐿 ≤ 𝐹𝐹2, because of the positivity of the cross sections. 

 

The reduced cross section is defined as  

𝜎𝜎𝑇𝑇  = 𝐹𝐹2(𝑑𝑑,𝑄𝑄2) − 𝑦𝑦2

𝑌𝑌+
∙  𝐹𝐹𝐿𝐿(𝑑𝑑,𝑄𝑄2) 

In Quark Parton Model, the photon interacts with quarks, the spin ½ particle having only longitudinal 

momentum, i.e., the Callon – Gross relation. Therefore 𝐹𝐹𝐿𝐿 = 0.  But in QCD, the quark interacts 

through gluon. Hence, the virtual photon also has transverse momentum and 𝐹𝐹𝐿𝐿 > 0. Due to its origin 

𝐹𝐹𝐿𝐿 is directly connected with the gluon distribution in the proton and therefore can provide a sensitive 

test of perturbative QCD. 

 

RESULTS AND DISCUSSION: 
 

At finite energies the structure functions is replaced by the longitudinal structure functions 

𝐹𝐹𝐿𝐿 (𝑑𝑑,𝑄𝑄2) = 𝐹𝐹2 (𝑑𝑑,𝑄𝑄2) �1 +  
4𝑀𝑀2𝑑𝑑
𝑄𝑄2 � − 2𝐹𝐹1 (𝑑𝑑,𝑄𝑄2) 

which is in turn related to the ratio of absorption cross section for longitudinally and transversely 

polarized virtual photons 

𝑅𝑅 =  
𝜎𝜎𝐿𝐿
𝜎𝜎𝑇𝑇

=  
𝐹𝐹𝐿𝐿 

2𝑑𝑑𝐹𝐹1 
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x 𝐹𝐹2  𝐹𝐹𝐿𝐿  R 

0.15 0.2827 -0.2127 -0.7523 

0.2 0.3171 -0.1298 -0.4137 

0.3 0.3051 0.0754 0.2471 

0.4 0.2418 0.1808 0.7477 

0.5 0.1720 0.1886 1.0965 

0.6 0.1142 0.1528 1.3380 

0.7 0.0729 0.1102 1.5116 

0.8 0.0437 0.0720 1.6475 

0.9 0.0193 0.0342 1.7720 

0.95 0.0054 0.0100 1.8518 

1.0 0 0 0 

 

 

 HERA as opened the field of low x physics which is governed by gluon interaction and which is 

far from being fully understood. The gluon momentum density at low x is very large. This causes the 

structure function F2 to rise at low x. It determines the longitudinal structure function to be large and the 

production cross section of heavy flavors to be sizeable.    

 

As expected even with our calculation it is found that 𝐹𝐹𝐿𝐿 is found to be larger than 𝐹𝐹2 . It is mainly due to 

the gluon emission as predicted earlier [8]. However although  theoretical calculation predict a negative 

value for low Q2 region as the result got by our model too, a negative value of 𝐹𝐹𝐿𝐿 may not be measured. 

Experiments does not support the negative value of FL. Here we have the limitation of our model. Hence 

the x dependence of it at low Q2 region needs to be studied thoroughly. Also more experimental data in 

this region may throw more light in this structure.  It is proposed to further probe into the theory and a 

complete analysis to be done with our model. 

 

Although the results of our model matches with the experimental data given below for the value of x in 

the  range given in the table. 
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