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The Standard Model includes neutrinos as massless particles, but neutrino oscillations showed,
that neutrinos are not massless. A simple extension of adding gauge singlet fermions to the par-
ticle spectrum allows normal Yukawa mass terms for neutrinos. The smallness of the neutrino
masses can be well understood within the seesaw mechanism. We analyse two cases of the mini-
mal extension of the standard model when are added one or two right-handed fields to the three
left-handed fields. In this model second Higgs doublet is included. We calculate the one-loop
radiative corrections to the mass parameters which produce mass terms for the neutral leptons.
In both cases we numerically analyse light neutrino masses as functions of the heavy neutrinos
masses. Parameters of the model are varied to find light neutrino masses that are compatible
with experimental data of solar ∆m2

� and atmospheric ∆m2
atm neutrino oscillations for normal and

inverted hierarchy.
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Parametrizing the Neutrino sector of the seesaw extension in tau decays Darius Jurciukonis

1. The model

We discus the extension of the Standard Model (SM) with a second Higgs doublet Φα ,α =

1,2 with added right-handed neutrino fields to the three left handed neutrino fields. The Yukawa
Lagrangian of the leptons is expressed by

LY =−
2

∑
k=1

(
Φ

†
k

¯̀RΓk + Φ̃
†
k ν̄R∆k

)
DL +H.c. (1.1)

in a vector and matrix notation, where Φ̃k = iτ2Φ∗k . In expression (1.1) the `R, νR, and DL =(νL `L)
T

are the vectors of the right-handed charged leptons, of the right-handed neutrino singlets, and of
the left-handed lepton doublets, respectively. The Yukawa coupling matrices Γk are nL×nL, while
the ∆k are nR×nL.

In this model, spontaneous symmetry breaking of the SM gauge group is achieved by the
vacuum expectation values 〈Φk〉vak =

(
0

vk/
√

2

)
. By a unitary rotation of the Higgs doublets, we

can achieve 〈Φ0
1〉vak = v/

√
2 > 0 and 〈Φ0

2〉vak = 0 with v ' 246 GeV. The charged-lepton mass
matrix M` and the Dirac neutrino mass matrix MD are

M` =
v√
2

Γ1 and MD =
v√
2

∆1 , (1.2)

respectively with assumption that M` = diag
(
me,mµ ,mτ

)
. The mass terms for the neutrinos can be

written in a compact form with an (nL +nR)× (nL +nR) symmetric mass matrix

Mν =

(
0 MT

D
MD M̂R

)
, (1.3)

where the hat indicates that M̂R is a diagonal matrix. Mν can be diagonalized as

UT Mν U = m̂ = diag(m1,m2, . . . ,mnL+nR) , (1.4)

where the mi are real and non-negative. In order to implement the seesaw mechanism [1, 2] we
assume that the elements of MD are of order mD and those of MR are of order mR, with mD� mR.
Then, the neutrino masses mi with i = 1,2, . . . ,nL are of order m2

D/mR, while those with i = nL +

1, . . . ,nL+nR are of order mR. It is useful to decompose the (nL+nR)× (nL+nR) unitary matrix U
as U =

( UL
U∗R

)
, where the submatrix UL is nL×(nL+nR) and the submatrix UR is nR×(nL+nR) [3, 4].

With these submatrices, the left- and right-handed neutrinos are written as linear superpositions of
the nL + nR physical Majorana neutrino fields χi: νL = ULPLχ and νR = URPRχ , where PL and PR

are the projectors of chirality.
We can express the couplings of the model in terms of mass eigenfields, where three neutral

particles are coupling to neutrinos. The interaction of the Z boson with the neutrinos is given by

L
(ν)

nc =
g

4cw
Zµ χ̄γ

µ

[
PL

(
U†

LUL

)
−PR

(
UT

L U∗L
)]

χ , (1.5)

where g is the SU(2) gauge coupling constant and cw is the cosine of the Weinberg angle.
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Full formalism for the scalar sector of the multi-Higgs-doublet SM is given in Ref. [3, 4]. The
Yukawa couplings of the Higgs bosons H0

b to the neutrinos are given by

L
(ν)

Y

(
H0)=− 1

2
√

2 ∑
b

H0
b χ̄

[(
U†

R∆bUL +UT
L ∆

T
b U∗R

)
PL +

(
U†

L ∆
†
bUR +UT

R ∆
∗
bU∗L

)
PR

]
χ , (1.6)

with ∆b = ∑k bk∆k, where b are two-dimensional complex unit vectors. The neutral Goldstone
boson G0

bZ
is given by the vector bZ with bZ = (i,0).

Once the one-loop corrections are taken into account the neutral fermion mass matrix is given
by

M(1)
ν =

(
δML MT

D +δMT
D

MD +δMD M̂R +δMR

)
≈
(

δML MT
D

MD M̂R

)
, (1.7)

where the 03×3 matrix appearing at tree level (1.3) is replaced by the contribution δML. This
correction a symmetric matrix, it dominates among all the sub-matrices of corrections. Neglecting
the sub-dominant pieces in (1.7), one-loop corrections to the neutrino masses originate via the self-
energy function ΣS

L(0) = Σ
S(Z)
L (0)+Σ

S(G0)
L (0)+Σ

S(H0)
L (0), where the Σ

S(Z,G0,H0)
L (0) functions arise

from the self-energy Feynman diagrams and are evaluated at zero external momentum squared. In
the calculation of the self energies the neutrino couplings to the Z boson as well as the Higgs and
Goldstone bosons are determined by eqs. (1.5) and (1.6). Each diagram contains a divergent piece
but when summing up the three contributions the result turns out to be finite.

The final expression for one-loop corrections is given by [5]

δML = ∑
b

1
32π2 ∆

T
b U∗Rm̂

(
m̂2

m2
H0

b

−1

)−1

ln

(
m̂2

m2
H0

b

)
U†

R∆b

+
3g2

64π2m2
W

MT
DU∗Rm̂

(
m̂2

m2
Z
−1
)−1

ln
(

m̂2

m2
Z

)
U†

RMD, (1.8)

where sum ∑b runs over all neutral physical Higgses H0
b

1.

2. Case nR = 1

First we consider the minimal extension of the standard model adding only one right-handed
field νR to the three left-handed fields contained in νL.

We use the parametrization of ∆1 =
√

2mD
v ~a1

T and ∆2 =
√

2mD
v ~a2

T with |~a1|= 1 and |~a2|= 1.
Diagonalization of the symmetric mass matrix Mν (1.3) in block form is

UT MνU =UT
(

0 mD~a1
mD~a1

T M̂R

)
U =

(
M̂l 0
0 M̂h

)
. (2.1)

The non zero masses in M̂l and M̂h are determined analytically by finding eigenvalues of the her-
mitian matrix MνM†

ν . These eigenvalues are the squares of the masses of the neutrinos M̂l =

diag(0,0,ml) and M̂h = mh. Solutions m2
D = mhml and m2

R = (mh−ml)
2 ≈ m2

h correspond to the
seesaw mechanism.

1In our analysis we fix mH0
1
= 125 GeV but mH0

2
and mH0

3
we generate randomly in the range 1 to 1000 GeV.
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We can construct the diagonalization matrix U for the tree level from two diagonal matrices
of phases and three rotation matrices Utree =Uφ (φi)U12(α1)U23(α2)U34(β )Ui, where the angle β is
determined by the masses ml and mh. The values of φi and αi can be chosen to cover variations in
MD.

For calculation of radiative corrections we use following set of orthogonal complex vectors:
bZ = (i,0), b1 = (1,0), b2 = (0, i) and b3 = (0,1). Diagonalization of the mass matrix after calcula-
tion of one-loop corrections is performed with a unitary matrix Uloop =UegvUϕ(ϕ1,ϕ2,ϕ3), where
Uegv is an eigenmatrix of M(1)

ν M(1)†
ν and Uϕ is a phase matrix. The second light neutrino obtains its

mass from radiative corrections. The third light neutrino remains massless.

It is possible to estimate masses of the light neutrinos from experimental data of solar and
atmospheric neutrino oscillations [6] assuming that the lightest ml3 = 0. Considering the normal
ordering of the light neutrinos we receive ml1 = 5.0± 0.2× 10−11 GeV and ml2 = 8.7± 0.3×
10−12 GeV. Numerical analysis shows that we can reach those values for a heavy singlet with the
mass bigger than 830 GeV, see Fig. 1.
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Figure 1: Calculated masses of two light neutrinos as a function of the heavy neutrino mass mh. The mass
of the third light neutrino is zero, when nR = 1. Solid lines show the boundaries of allowed neutrino mass
ranges when the model parameters are constrained by the experimental data on neutrino oscillations. The
purple arrows indicates the values of ml2 neutrino mass which don’t satisfy allowed experimental neutrino
mass ranges. Due to the scale, the band of the allowed ml1 and ml2 values are close to each other accordingly
their values are shown separately in the right plots.

3. Case nR = 2

If we add two singlet fields νR to the three left-handed fields νL, the radiative corrections give
masses to all three light neutrinos.
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Now we parametrize ∆1 =
√

2
v

(
mD2 ~a1

T

mD1
~b1

T

)
and ∆2 =

√
2

v

(
mD2 ~a2

T

mD1
~b2

T

)
with |~a1| = 1, |~b1| = 1,

|~a2|= 1 and |~b2|= 1. Diagonalizing the symmetric mass matrix Mν (1.3) in block form we write:

UT MνU =UT

 03×3 mD2~a mD1
~b

mD2~a
T

mD1
~bT M̂R

U =

(
M̂l 0

0 M̂h

)
. (3.1)

The non zero masses in M̂l and M̂h are determined by the seesaw mechanism: m2
Di
≈ mhimli and

m2
Ri
≈ m2

hi
, i = 1,2. Here we use m1 > m2 > m3 ordering of masses. The third light neutrino is

massless at tree level.
The diagonalization matrix for tree level Utree = U12(α1,α2)Uegv(βi)Uφ (φi) is composed of a

rotation matrix, an eigenmatrix of UT
12MνM†

νU∗12 and a diagonal phase matrix, respectively.
For calculation of radiative corrections we use same set of orthogonal complex vectors bi as in

first case. Diagonalization of the mass matrix including the one-loop correction is performed with
a unitary matrix Uloop =UegvUϕ(ϕi), where Uegv is the eigenmatrix of M(1)

ν M(1)†
ν and Uϕ is a phase

matrix.
In numerical calculations the model parameters as well as the derived masses of the light neu-

trinos are obtained in several steps. First, the diagonal mass matrix for tree level is constructed.
The lightest neutrino is massless, and the masses of other two light neutrinos are estimated from
experimental data on solar and atmospheric neutrino oscillations. The masses of the heavy neutri-
nos are input parameters. This diagonal matrix is used to constrain the parameters αi and φi that
enter the tree-level mass matrix Mν and its diagonalization matrix Utree. Then the diagonalization
matrix is used to evaluate one-loop corrections to the mass matrix. Diagonalization of the corrected
mass matrix yields masses for three light neutrinos. If the calculated mass difference is compatible
with the experimental neutrino mass difference, the parameter set is kept. Otherwise, another set
of the parameters is generated. Figure 2 illustrate the obtained results. Both normal and inverted
neutrino mass orderings are considered.
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Figure 2: The masses mli of the light neutrinos as functions of the heaviest right-handed neutrino mass mh1 ,
for the case nR = 2. The value of second heaviest right-handed neutrino mass is fixed at mh2 = 100 GeV.
Plot in the left represent normal hierarchy than the plot in the right represent inverted hierarchy of the light
neutrinos. The wide solid lines indicate the place of the most frequent values of the scatter data. In inverted
hierarchy case the nearly degenerate masses ml1 and ml2 are shown separately in the lower right plot.
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4. Conclusions

For the case nR = 1 we can match the differences of the calculated light neutrino masses to
∆m2
� and ∆m2

atm with the mass of a heavy singlet bigger than 830 GeV. Only normal ordering of
neutrino masses is possible.

In the case nR = 2 we obtain three non vanishing masses of light neutrinos for normal and
inverted hierarchies. The numerical analysis shows that the values of light neutrino masses (es-
pecially of the lightest mass) depend on the choice of the heavy neutrinos masses. The radiative
corrections generate the lightest neutrino mass and have a big impact on the second lightest neutrino
mass.

In future we plan to apply our parametrization to study the τ polarization coming from the
decay of a W boson in the data of the CMS experiment at LHC and thus determine restrictions to
the parameters of the neutrino sector.
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