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In 2004, two of us proposed a texture, the “Simplest” neutrino mass matrix, which predicted
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atm and δCP =±90◦. Using today’s measured values for neutrino mass-

squared differences, this prediction gives sin22θ13 ' 0.086+0.003
−0.006, in excellent agreement with

a measured value of sin22θ13 = 0.098± 0.011. Here we present a specific model based on S4

symmetry leading to this successful texture in the context of the type-1 see-saw mechanism,
assuming Majorana neutrinos. Similar predictions are obtained relating θ13 to the light neutrino
masses, which are in accord with current experimental limits and testable at future experiments.
Large CP asymmetries remain a generic prediction of the texture.
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1. Introduction

Leptonic mixing is characterised by two large mixing angles, θ12' 35◦ and θ23' 45◦, and one
small one, θ13. For several years, the data on neutrino oscillations were compatible with θ13 = 0,
and the data together were approximated by the tribimaximal (TBM) mixing scheme [1]. TBM has
been used by many authors as a starting point for model building. The Daya Bay [2] and RENO
[3] reactor neutrino experiments recently measured the value for the reactor mixing angle to be
definitively non-zero, with a combined value of sin2 2θ13 = 0.098±0.010 (stat.)±0.005 (syst.), a
result given additional support by several other experiments [4, 5, 6].

Anticipating possible deviations from TBM, two of us proposed some generalisations [7], in
which the condition θ13 = 0 was relaxed variously. Eg. in a basis in which the charged lepton mass
matrix (MM) is diagonal, a hermitian neutrino MM which has µ-τ reflection symmetry [8] and
democracy (each of its rows and columns sums to a common value) [9] leads to “triχmaximal”
mixing (TχM) [7]:

|Ue2|2 =
1
3
, sin2

θ23 =
1
2
, sin2

θ13 =
1
3

(
1− 1√

1+3k2

)
; δCP =±90◦. (1.1)

We remark that TχM corresponds to maximal CP violation, for any particular value of θ13.
If neutrinos were Majorana particles, the neutrino MM would be complex-symmetric. We

therefore determined [10] the general complex-symmetric MM that generates TχM:

MS = a

 1 −ik ik
−ik 1+ ik 0
ik 0 1− ik

+b

0 1 1
1 1 0
1 0 1

+ c

1 0 0
0 0 1
0 1 0

 , (1.2)

with k, a, b, and c real parameters. The only free mixing parameter in TχM is the angle θ13 which
is uniquely determined by the real parameter k in the matrix MS.

The TχM mixing form [7], UT χM, defined by Eq. (1.1), diagonalises each of the three terms of
the matrix MS of Eq. (1.2), independently. The first term of MS alone is in fact, sufficient to generate
TχM, having three distinct eigenvalues. The second and the third terms of MS give two degenerate
and three degenerate eigenvalues respectively. A symmetric matrix, MS, can be diagonalised using
the appropriate unitary matrix and its transpose to give real positive eigenvalues:

UT
T χM MS UT χM = Diag(|a

√
1+3k2−b+ c|, |a+2b+ c|, |−a

√
1+3k2−b+ c|). (1.3)

A special case of TχM, known as “Simplest” neutrino mixing and defined by b = 0 (eg. in
Eqs. (1.2) and (1.3)) was proposed in 2004 [11] (having been first introduced in [7]). Simplest
neutrino mixing yields an exact and very simple relation between the reactor mixing angle (see
Eq. (1.1)) and the eigenvalues, ei:

sin2
θ13 =

2
3
(e2− e1)

(e3− e1)
. (1.4)

In the original publications [7, 11], the Simplest texture was proposed for M2
ν := MνM†

ν , in which
case the eigenvalues are the neutrino masses-squared, resulting in the very successful prediction:

sinθ13 =

√
2
3

∆m2
sol

∆m2
atm

. (1.5)
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Figure 1: Octahedral symmetry in the µ-τ rotated basis (x′,y′,z′).

i.e. sin22θ13 = 0.086+0.003
−0.006, predicted in 2002/2004 [7, 11], compared with sin22θ13 = 0.098±

0.011, measured in 2012 [2, 3].
In view of this very successful prediction, we decided to revisit Simplest mixing, proposing a

new model for it [10], based on the group S4. We make the following two changes with respect to
the original ansatz: we adopt the Simplest form for the neutrino MM itself (rather than its hermitian
square); a Majorana mass term is assumed, exploiting the type-I see-saw mechanism. Thus, we get
a Majorana neutrino MM of the following Simplest complex-symmetric form:

Mν(Majorana) = a

 1 −ik ik
−ik 1+ ik 0
ik 0 1− ik

+ c

1 0 0
0 0 1
0 1 0

 . (1.6)

We construct such a Majorana MM assuming symmetry under S4, with the neutrino Dirac MM as-
sumed to be proportional to the identity. We show that this model has a phenomenology compatible
with experiment, and we use it to predict the masses of the light neutrinos.

2. The group S4 and the µ-τ rotated basis

S4 is the symmetry group of the cube and the octahedron. It has the abstract presentation
〈aaa,bbb|aaa2 = bbb3 = (aaabbb)4 = e〉, where aaa, bbb and aaabbb represent the orientation-preserving rotations of a
cube through angles π , 2π

3 and π

2 respectively, as shown in Fig. 1 (axisa and axisb correspond to the
generators aaa and bbb respectively). The character table for the S4 group can be found in [12].

We define a right-handed neutrino triplet νR = (νe,νµ ,ντ). Many authors work in a basis with
the coordinate axes normal to the faces of the cube as shown in Fig. 1(a) and with the elements
of νR defined parallel to these coordinate axes. Then the νe, νµ and ντ are simply the invariant
eigenstates (eigenstates with eigenvalue equal to +1) of the π

2 symmetry rotations of the cube. For
our model of the “Simplest” texture, we define instead the νµ and ντ basis states rotated by an angle
π

4 in the y− z plane relative to the cube, as shown in Fig. 1(b). For covenience, we also rotate the
y and z coordinate axes to align with the new νµ and ντ flavour basis states respectively, denoting
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the rotated coordinate system, (x′,y′,z′) as shown in Fig. 1(b). The state νe is unchanged and still
corresponds to the π

2 -rotation symmetry of the cube about the x-axis. However, νµ and ντ are no
longer invariant eigenstates of π

2 -rotations, but rather are invariant under π rotations of the cube, as
may be seen in Fig. 1(b). We call this new basis, the µ-τ rotated basis.

The three-dimensional representation of S4 corresponding to the rotational symmetries of the
cube is denoted by 333′′′ here. Thus the neutrino triplet (νe,νµ ,ντ) belongs to the 333′′′ representation.
A Majorana mass term contains two neutrino fields, and thus it is of interest to consider the tensor
product decomposition of two 333′′′s. This decomposition is as follows:

333′′′×333′′′ = 111+222+333+333′′′, (2.1)

where 111 is the trivial representation, and in the µ-τ rotated basis we have:

χ1 =
1√
3
(νe.νe +νµ .νµ +ντ .ντ), χ2 =

−√ 2
3 νe.νe +

1√
6
νµ .νµ +

1√
6
ντ .ντ

1√
2
(νµ .ντ +ντ .νµ)

 ,

χ3 =


1√
2
(νµ .νµ −ντ .ντ)

1√
2
(ντ .νe +νe.ντ)

1√
2
(νe.νµ +νµ .νe)

 , χ
′
3 =


1√
2
(νµ .ντ −ντ .νµ)

1√
2
(ντ .νe−νe.ντ)

1√
2
(νe.νµ −νµ .νe)

= 0, (2.2)

where the bi-linears χ1, χ2, χ3, χ ′3 transform as 111, 222, 333, 333′′′ respectively. The product νi.ν j is the
Lorentz-invariant product of the right-handed neutrino Weyl spinors.

We now assume three types of flavons, φ1, φ2 and φ3, which transform as 111, 222 and 333 respec-
tively, allowing us to write an invariant mass term:

Inv = c1χ1φ1 + c2χ
T
2 φ2 + c3χ

T
3 φ3, (2.3)

where c1, c2 and c3 are constants. Once the flavons acquire specific forms of vacuum expectation
values (vevs), the required MM can be obtained from the invariant mass term given in Eq. (2.3).
Suppose the flavons get vevs

〈φ1〉= 1,〈φ2〉=
(
−1

2

√
3

2

)
,〈φ3〉= (1,1,−1) , (2.4)

the MM obtained will be

M = c1I +
c2
√

3
2
√

2

 2
3 0 0
0 −1

3 1
0 1 −1

3

+
c3√

2

 0 −1 1
−1 1 0
1 0 −1

 , (2.5)

which is in the same form as Eq. (1.6), assuming c1 and c2 to be real and c3 to be imaginary (where
here the trace is removed from the second term and is absorbed into the first). The details of how to
obtain the flavon vevs by minimisation of flavon potentials are given in the appendix to Ref. [10].

3. The model

The model is constructed in a Standard Model framework with the addition of heavy right-
handed neutrinos. Light Majorana neutrinos are produced via a type-1 seesaw mechanism. The
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fermion and flavon content of the model is given in Table 1. The Standard Model Higgs field is
assigned to the trivial representation of S4.

eR µR τR L νR φ
−
1 φ1 φ2 φ3 φ ′3e φ ′3µ

φ ′3τ

S4 111 111 111 333′′′ 333′′′ 111 111 222 333 333′′′ 333′′′ 333′′′

C2e −1 1 1 1 1 1 1 1 1 −1 1 1
C2µ 1 −1 1 1 1 1 1 1 1 1 −1 1
C2τ 1 1 −1 1 1 1 1 1 1 1 1 −1
C2D −1 −1 −1 −1 1 −1 1 1 1 1 1 1

Table 1: The flavour structure of the model. L are the three left-handed lepton weak isospin doublets and νR

are the three right-handed heavy neutrinos. The 333′′′ representations are in the µ-τ rotated basis and the 222 and
the 333 representations are in the basis given by the tensor product expansion in the text.

The C2 flavour symmetries C2e, C2µ and C2τ ensure that the flavons φ ′3e, φ ′3µ
and φ ′3τ

couple
only to eR, µR and τR respectively. We thus obtain a diagonal MM for the charged leptons from a
mass term of the form(

yeL†eRφ
′
3e + yµL†

µRφ
′
3µ + yτL†

τRφ
′
3τ

)
(H/Λ)+H.C. (3.1)

where H is the standard model Higgs, Λ is the cut-off scale and the yi are coupling constants. After
the weak gauge symmetry and the flavour symmetry are spontaneously broken, with the flavons
φ ′3e, φ ′3µ

and φ ′3τ
, getting vevs of (1,0,0)T , (0,1,0)T and (0,0,1)T respectively, we get the required

masses me, mµ and mτ for the charged leptons. We postulate a singlet flavon φ
−
1 and introduce

another C2 symmetry C2D to allow only this singlet flavon to enter the Dirac mass term:

ywL†
νRH̃(φ−1 /Λ)+H.C., (3.2)

where H̃ is the conjugate Higgs and yw, a coupling. Thus the neutrino Dirac MM is proportional to
the identity. The Majorana mass term containing the right-handed neutrinos is as follows:(

y1χ1φ1 + y2χ
T
2 φ2 + iy3χ

T
3 φ3
)
/Λ, (3.3)

where the χi are given by the expressions in Eqs. (2.2) and the yi (i = 1, 2, 3) are couplings leading
to very heavy right-handed Majorana masses. This leads to a Majorana MM of the form given
by Eq. (2.5) as explained in the previous section. The flavons φ1, φ2 and φ3 get the vevs given in
Eqs. (2.4) and also with 〈φ−1 〉= 1, we get the following 6×6 mass matrix, M, for the neutrinos:

ν
T
α M ν

α ; M =

(
0 MDir

MDir MMaj

)
, ν =

(
ν∗L
νR

)
(3.4)

with νL the left-handed neutrino triplet and where MDir =
yw
2Λ

I, and MMaj is of the required form
given in Eqs. (1.6) and (2.5). Here, MMaj is at a very high mass scale and MDir is of order the
weak scale, so that the seesaw mechanism comes into play. The effective mass matrix, Mss, thus
generated for the left-handed light neutrinos is in the form [13]

Mss =−MDirM−1
MajMDir. (3.5)

A matrix of the form UT χM diagonalises Mss giving light neutrino masses proportional to (1/e1),
(1/e2), (1/e3), where e1, e2 and e3 are the eigenvalues of MMaj.
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4. Fitting the model with experimental data

The squared differences of the light neutrinos masses are known experimentally, m2
2−m2

1 =

75.9± 2.1 meV2, |m2
3−m2

2| = 2430± 130 meV2. The eigenvalues of the Majorana mass matrix,
MMaj from Eq. (1.6), are

e1 = c+a
√

1+3k2, e2 = c+a, e3 = c−a
√

1+3k2 (4.1)

(a, c and k are real in our model, given our earlier assumptions). Since the light neutrino masses
are inversely proportional to these eigenvalues, we get

m2
2−m2

1

m2
3−m2

2
=± 75.9±2.1

2430±130
=

(1/e2
2)− (1/e2

1)

(1/e2
3)− (1/e2

2)
=−(r− s)2(1− s)(1+2r+ s)

(r+ s)2(1+ s)(1+2r− s)
(4.2)

where r = c/a and s =
√

1+3k2. Using the observed reactor mixing angle, θ13, in Eq. (1.1), we
can find the value of k and use this in Eq. (4.2) to obtain the parameter r, and thus predict the
values of the light neutrino masses. Eq. (4.2) is cubic in r, giving three real solutions for normal
hierarchy and one for inverted hierarchy. One of the normal hierarchy solutions gives the wrong
sign for the solar mass-squared difference, leaving three solutions compatible with data. Thus the
predictions for the light neutrino masses fall into three sets, as shown in Fig. 2, where the best
fit values are used. The predicted ranges for the mass of the neutrino eigenstate ν1, allowing for

Solution 1

Masses
H meV L

Solution 2 Solution 3

m1

m2

m3

m1

m2

m3

m1

m2

m3

20

40

60

80

100

120

Figure 2: The predicted values of the neutrino masses corresponding to the best fit (m2
2−m2

1 = 75.9 meV2,
|m2

3−m2
2| = 2430 meV2, sin2 2θ13 = 0.098). Case 1 (r = 0.4101) and case 2 (r = 14.452) are in normal

hierarchy. Case 3 (r =−1.0405) is in inverted hierachy.

experimental uncertainties in the observed neutrino masss-squared differences are shown in Fig. 3.
For solution 2 we do not consider a mass above 100 meV in order to keep our prediction compatible
with the cosmological upper limit of the masses of the neutrinos [14]. It should be emphasised that
TχM, as obtained here implies maximal CP violation (|δCP| = 90◦). The positive and negative
signs of the parameter k correspond to the CP-violating phase δCP =±90◦.

6



P
o
S
(
I
C
H
E
P
2
0
1
2
)
3
9
1

The Simplest Neutrino Mass Matrix Revisited P.F. Harrison

solution 1

solution 3

solution 2

0.080 0.085 0.090 0.095 0.100 0.105 0.110

20

40

60

80

100

sin22Θ13

M
as

s
of

n
eu

tr
in

o
st

at
e

Ν
1

Hm
eV

L

.

Figure 3: The predicted value of m1 (the mass of the ν1 eigenstate) vs the measured value of sin2 2θ13. The
finite thickness of the bands is due to the errors in the measurement of the neutrino mass-squared differences.
The red and the black lines indicate the best fit value and the errors on sin2 2θ13 respectively.
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