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Just like the weakly interacting QED can support non-perturbative phenomena, like atoms, so

can the weak and Higgs interactions. Especially, there are strong field-theoretical arguments

that only bound states can be the (quasi-)asymptotic physical degrees of freedom of this sector.

After a brief review of these arguments, the 2-point, 3-point and 4-point correlation functions of

the Higgs-W system are determined using lattice gauge theory. The results support a conjectured

duality between elementary states and bound states for weakHiggs self-interactions. This leads to

relations between the bound states and the experimentally observed particles. Interestingly, these

may yield pseudo-scalar admixtures at the Higgs energy, andpossibly a faint standard-model

signal in the channel where a Kaluza-Klein graviton would beexpected.
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1. Introduction: The need for non-perturbative phenomena in the Higgs sector

Weakly interacting gauge theories have a surprisingly richstructure. QED is the paradigmatic
example, being the most weakly interacting part of the standard model, aside from some of the
Yukawa interactions of the Higgs. Nonetheless, atoms are non-perturbative stable bound states.

Similarly, the weak interactions and the Higgs sector can beexpected to provide bound states.
The most profound reason is possibly that neither the Higgs nor theW andZ are gauge-invariant
states, and thus cannot be physical asymptotic states [1]. Less fundamental, but likely as valid
aside from triviality questions, is the phase structure of the pureW-Higgs sector considered here
[2]: Since the would-be Higgs regime and the would-be confinement regime are continuously
connected, the asymptotic state space must be the same, irrespective of the strength of the Higgs
self-interaction.

Both arguments imply that bound states, described by gauge-invariant composite operators,
are the actual physical degrees of freedom. This raises immediately the question of why then a
perturbative description, identifying the Higgs and theW as physical particles, describes the exper-
imental results so well. The reason is a duality [1] between these elementary particles, described in
more detail in section 2 and 3, and the bound states, described in section 4. This has quite profound
consequences for experimental signatures, see section 4 and [3].

2. Gauge-dependent correlators: Propagators

Here, only the pureW-Higgs sector is considered, i. e. a theory described by the Lagrangian

L = −
1
4
Wa

µνWµν
a +(Dµφ)+Dµφ − γ(φφ+)2−

m2

2
φφ+ (2.1)

Wa
µν = ∂µWa

ν −∂νWa
µ −g fabcWb

µWc
ν

Di j
µ = ∂µδ i j − igWa

µ τ i j
a ,

with the fundamental complex scalarφ coupled to su(2) valued gauge fieldsWµ (containing the,
without QED, degenerateW andZ gauge bosons) with the field strength tensorWa

µν , the covariant
derivativeDµ , the coupling constantsg, γ , andm, the Pauli matricesτ , and structure constantsf abc.
To obtain non-perturbative results, lattice simulations can be used [3–6]. See [3] for the technical
details of the simulations done here, which were performed at a Higgs mass of 153 GeV.

The propagation of the elementaryW and Higgs particles are described by the gauge-dependent
and renormalization-scheme-dependent 2-point functions〈Wa

µWb
ν 〉(x− y) and〈φ+aφb〉(x− y), re-

spectively [7]. Thus, it is necessary to fix a gauge to determine them, which will be here the
non-aligned [8] minimal Landau gauge [9], see again [3] for implementation and renormalization
details.

The resulting propagators are shown in figure 1 in both momentum and position space. Note
that the mass of the Higgs is scheme-dependent [3, 7]. It has been set to a value of 153 GeV
for reasons to become apparent in section 4. In position space, both propagators are essentially
behaving, within large statistical errors, as simple massive particles. In momentum space, this is
also the case for the Higgs particle. However, theW shows a decay at large momentum different
from the one of a massive particle. This is expected, since theW is not truly massive, and a faster
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Figure 1: The two-point functions in position space for zero three-momentum (left panel) and momentum
space for various momentum configurations (right panel), compared to tree-level massive particle fits. See
[3] for details of the lattice simulations and parameters. All results from a 244 lattice at(147 GeV)−1 lattice
spacing (corresponding to an imposed cutoff of roughly 650 GeV), where the scale was set by theW mass.

decay is necessary for the unitarization of cross sections [7]. Thus, both the Higgs and theW
behave essentially as expected.

3. Gauge-dependent correlators: Vertices

Besides the particles themselves their interactions are ofcourse highly interesting, as many
sensitive tests of the standard model are on electroweak radiative corrections. Though the 4-Higgs
coupling, especially its high momentum behavior, would be adecisive information for the question
of triviality, it is a challenging problem, due to disconnected contributions, in numerical simula-
tions. Though non-aligned gauges reduce this challenge significantly [8], this will require much
further development.

The gauge interaction, however, is much more accessible, since it already appears at three-
point level. Moreover, the running coupling can in Landau gauge be extracted already from the
2-point functions of theW and the ghost alone [11]. It is shown in the left panel of figure2. While
it shows a slow decay towards higher momenta, it quickly vanishes in the infrared, just like in pure
Yang-Mills theory [9].

Even more interesting are the full three-point vertices [13]. In the current gauge, three of them
exist. Two are entirely in the gauge sector, being the three-W vertex and theW-ghost-vertex. In
addition, there is theW-Higgs vertex. Concerning the latter, particular care is necessary. Since the
Lagrangian (2.1) exhibits, in addition to the local gauge symmetry, a unbroken global Higgs flavor
symmetry [14], only such correlation functions are non-zero, which are invariant under both global
color and flavor rotation. While this is the case for all propagators and the gauge vertices, the naive
definition of the Higgs-W vertex is not, and one has to relegate to a flavor-invariant one. Then the
calculation of all vertices is straight-forward [9, 13], since there are no disconnected contributions
in the present gauge.
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Figure 2: The left panel shows the running weak fine structure constant, as determined from the two-point
functions [10, 11] on a 244 lattice with a lattice spacing of(147 GeV)−1, see [3, 10] for details. The spreading
of the points at mid-momentum is a lattice artifact [9]. The right panel shows the dressing functions of the
3-point vertices with all momenta of equal size and incoming, from a 84 lattice with the same lattice spacing,
renormalized to one at 158 GeV. For the ghost-W and Higgs-W vertices, this is the only dressing function,
while for the 3-W vertex the projection on the tree-level vertex is shown, see[12, 13] for details.

The results for the amputated and renormalized vertices at the symmetric point|p|= |q|= |k|
are shown in the right panel of figure 2. All dressing functions do not deviate strongly from the
tree-level result, at least within the relatively large errors. This is in agreement with the current
experimental results [15]. Much more precise results will be necessary to find if any relevant
deviation from perturbation theory exists [13].

4. Bound states: Towards Higgs sector spectroscopy

In a non-Abelian gauge theory, only composite operators canbe physical states [1], and they
can be interpreted as bound states, just as in QCD. This does not yet make a statement about the
properties of these states, though in the current setup the lightest one will be necessarily stable,
since without the rest of the standard model no decay channels are open. Such bound states have
been calculated in the past for the theory described by (2.1), see e. g. [3–6], and the lightest particle
has been found to be massive. The low-lying spectrum of the theory is shown in figure 3.

Already from these data an interesting observation can be made. The state with the same
quantum numbers as theW, the 1−− state is threefold degenerate and has the same mass as theW,
though the degeneracy is now a consequence of the flavor instead of the gauge symmetry. At the
same time the state with the 0++ quantum numbers of the Higgs is found to be roughly at 150 GeV,
and by a different choice of lattice parameters can likely bebrought down to 125 GeV [13].

This similarity of the masses to the elementary particles isnot coincidental. E. g. the 0++ state
can be expanded in an appropriate gauge in the quantum fluctuations η = φ −〈φ〉 of the Higgs
field as [1]

〈φ+
i (x)φ i(x)φ+

j (y)φ
j (y)〉 ≈ 〈φ〉4+ 〈φ〉2(c′+ 〈φ+(x)φ(y)〉)+O(〈|η |〉). (4.1)

4



P
o
S
(
I
C
H
E
P
2
0
1
2
)
4
2
7

P
o
S
(
I
C
H
E
P
2
0
1
2
)
4
2
7

Non-perturbative aspects in the Higgs sector Axel Maas

am

0

1

2

3

m
 [G

eV
]

0

50

100

150

200

250

300

350

400

++0

++*0

--1

--*1

-+0

++2

PRELIMINARYSpectrum

Figure 3: The low-lying spectrum. See [3] for details on the calculation of the 0++ and 1−− states, which
have been obtained on a 244 lattice. The data are not extrapolated to the continuum and infinite volume limit.
The very preliminary results on the 0−+ and 2++ state are also not extrapolated and from a 84 lattice, and
contain only standardW-ball operators [16]. In both cases the lattice spacing isa= (147 GeV)−1. Note that
due to the flavor symmetry the 1−− is threefold degenerate. The square is the average value, while the box
marks the statistical uncertainty.

which implies that to leading order the elementary Higgs andthe 0++ bound state, made up out
of 2 Higgs particles [3], should have the same pole mass. A similar duality relation holds for the
W and the bound state in the 1−− channel. Thus the physical states are, to leading order in the
quantum fluctuation of the Higgs field, indistinguishable from the bound states. Therefore, the
physical observed resonances in experiments can, and should be [1, 3], identified with the physical
bound states, rather than with the gauge-dependent elementary degrees of freedom. Note that in
a constitute picture the mass defect of these states is of theorder of the constituent mass. These
states are therefore deeply bound, relativistic states, and thus inaccessible to quantum-mechanical
Schrödinger-type equations.

The remainder of the spectrum is then quite interesting. There are excited states, which may or
may not be just scattering states, and states with more exotic quantum numbers. All of these states
have no leading-order contribution in an expansion like (4.1). They are thus of higher order in the
Higgs fluctuations. As a crude and very naive estimate, it canbe expected that their production is
thus suppressed at least by the ratio〈|η |〉/〈φ〉, which for the present lattice setting is bound from
above by 1%. Thus, very crudely, at least 100 times the statistics will be necessary to identify these
effects. Given that about 10 fb−1 had been necessary to find the (possible) Higgs, this would imply
about 1000 fb−1, an amount of statistics the LHC may reach in the early 2020ies with a luminosity
upgrade, or at the ILC. However, the 0−+ state nearby to the 0++ state may already make itself
notable earlier by parity-violating stray decays.

More importantly these states, if they are sufficiently stable to be detectable at all, can give
rise to a standard model background to new physics searches.The 2++ state, e. g., has the quantum
numbers expected for a heavy Kaluza-Klein/Randall-Sundrum graviton. Understanding these states
thoroughly is thus indispensable to make sure that they do not afflict these searches.
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However, these investigations are yet at a very preliminarypoint. Though the existence of such
states is a consequence of quantum field theory, their properties are not. These lattice simulations
yet lack infinite-volume and continuum-extrapolation, a determination of decay properties, and,
probably much more importantly, the effects of QED and fermions, which may influence such states
quite significantly. Especially parity violations will be aserious challenge, but the combination
of lattice and continuum methods, working so well for QCD [9], may provide an option. For
this, the results from sections 2 and 3 will be very important. Finally, the determination of cross-
sections non-perturbatively is highly complicated, especially for bound states. The use of effective
low-energy theories may therefore be compulsory to finally arrive at quantitative predictions for
experiments, beyond the mere prediction of the states. Nonetheless, if these states exist, they
offer a quite intriguing manifestation of field theory, and awhole new arena for spectroscopy at
experiments in the Higgs sector.
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